Greece is one of Europe’s most seismically active areas. Seismic activity in Greece has been characterized by a series of strong earthquakes with magnitudes up to Mw = 7.0 over the last five years. In this article we focus on these strong events, namely the Mw6.0 Arkalochori (27 September 2021), the Mw6.3 Elassona (3 March 2021), the Mw7.0 Samos (30 October 2020), the Mw5.1 Parnitha (19 July 2019), the Mw6.6 Zakynthos (25 October 2018), the Mw6.5 Kos (20 July 2017) and the Mw6.1 Mytilene (12 June 2017) earthquakes. Based on the probability distributions of interevent times between the successive aftershock events, we investigate the temporal evolution of their aftershock sequences. We use a statistical mechanics model developed in the framework of Non-Extensive Statistical Physics (NESP) to approach the observed distributions. NESP provides a strictly necessary generalization of Boltzmann–Gibbs statistical mechanics for complex systems with memory effects, (multi)fractal geometries, and long-range interactions. We show how the NESP applicable to the temporal evolution of recent aftershock sequences in Greece, as well as the existence of a crossover behavior from power-law (q ≠ 1) to exponential (q = 1) scaling for longer interevent times. The observed behavior is further discussed in terms of superstatistics. In this way a stochastic mechanism with memory effects that can produce the observed scaling behavior is demonstrated. To conclude, seismic activity in Greece presents a series of significant earthquakes over the last five years. We focus on strong earthquakes, and we study the temporal evolution of aftershock sequences of them using a statistical mechanics model. The non-extensive parameter q related with the interevent times distribution varies between 1.62 and 1.71, which suggests a system with about one degree of freedom.
Large subduction-zone earthquakes generate long-lasting and wide-spread aftershock sequences. The physical and statistical patterns of these aftershock sequences are of considerable importance for better understanding earthquake dynamics and for seismic hazard assessments and earthquake risk mitigation. In this work, we analyzed the statistical properties of 42 aftershock sequences in terms of their temporal evolution. These aftershock sequences followed recent large subduction-zone earthquakes of M ≥ 7.0 with focal depths less than 70 km that have occurred worldwide since 1976. Their temporal properties were analyzed by investigating the probability distribution of the interevent times between successive aftershocks in terms of non-extensive statistical physics (NESP). We demonstrate the presence of a crossover behavior from power-law (q ≠ 1) to exponential (q = 1) scaling for greater interevent times. The estimated entropic q-values characterizing the observed distributions range from 1.67 to 1.83. The q-exponential behavior, along with the crossover behavior observed for greater interevent times, are further discussed in terms of superstatistics and in view of a stochastic mechanism with memory effects, which could generate the observed scaling patterns of the interevent time evolution in earthquake aftershock sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.