It has been demonstrated that strength training can be organized in children in a safe and effective way. However, there is limited data regarding its impact on muscle hypertrophy. This study investigated the effects of a high-intensity strength training (HIS) on knee extensor/flexor strength, countermovement (CMJ) jumping height, postural control, soft lean mass and muscle cross-sectional area (CSA) of the dominant leg in prepubertal children. Thirty-two children participated in this study and were assigned to an intervention (INT; N=17) or a control class ( N=15). The INT participated in 10 weeks of weight-machine based HIS integrated in physical education. Pre/post tests included the measurements of peak torque of the knee extensors/flexors at 60 and 180°/s, CMJ jumping height, postural sway, soft lean mass of the leg by bioelectrical impedance analysis, and CSA (m. quadriceps) by magnetic resonance imaging. HIS resulted in significant increases in knee extensor/flexor peak torque (60°/s and 180°/s). HIS did not produce significant changes in CMJ jumping height, postural sway, soft lean mass, and CSA. Although HIS was effective at increasing peak torque of the knee extensors/flexors in children, it was unable to affect muscle size. It appears that neural factors rather than muscle hypertrophy account for the observed strength gains in children.
BACKGROUND
This study examined whether prazosin reduces alcohol drinking over the course of prolonged treatment and whether it blocks initiation of alcohol drinking in rats with a genetic predisposition toward high alcohol drinking, i.e, alcohol-preferring (P) rats.
METHODS
In study one, alcohol-experienced P rats that had been drinking alcohol 2 hrs/day for several months were treated daily with prazosin (0, 0.5, 1.0 or 2.0 mg/kg BW) for 7 weeks. In study two, alcohol-naïve P rats were treated daily with prazosin (0, 1.0 or 2.0 mg/kg BW) for two weeks prior to, or concomitantly with, initiation of alcohol access and throughout 3 weeks of alcohol availability. Prazosin treatment and alcohol access were then discontinued for 2 weeks followed by reinstatement of alcohol access without prazosin treatment for 4 weeks, followed by resumption of daily prazosin treatment (2.0 mg/kg BW) for 3 weeks.
RESULTS
Prazosin reduced alcohol drinking throughout 7 weeks of treatment in P rats accustomed to drinking alcohol. Following termination of prazosin treatment, alcohol drinking slowly returned to pretreatment baseline. Reduced alcohol intake was accompanied by increased water intake. In alcohol-naïve P rats, prazosin administration prior to the first opportunity to drink alcohol and throughout 3 weeks of alcohol access retarded acquisition of alcohol drinking and reduced the amount of alcohol consumed. When prazosin was administered concomitantly with the first opportunity to drink alcohol, it abolished acquisition of alcohol drinking. Discontinuation of prazosin treatment allowed expression of a genetic predisposition toward high alcohol drinking to gradually emerge. Prazosin retained the ability to reduce alcohol intake with repeated treatments.
CONCLUSIONS
Prazosin decreased alcohol drinking during prolonged treatment and may be useful for treating alcoholism and alcohol use disorders. Prazosin may also be useful for deterring initiation of drinking in individuals with a family history of alcoholism.
Background
This study examined whether varenicline (VAR), or naltrexone (NTX), alone or in combination, reduces alcohol drinking in alcohol-preferring (P) rats with a genetic predisposition toward high voluntary alcohol intake.
Methods
Alcohol experienced P rats that had been drinking alcohol (15% v/v) for 2 hrs/day for 4 weeks were fed either vehicle (VEH), VAR alone (0.5, 1.0 or 2.0 mg/kg BW), NTX alone (10.0, 15.0 or 20.0 mg/kg BW) or VAR + NTX in one of four dose combinations (0.5 VAR + 10.0 NTX, 0.5 VAR + 15.0 NTX, 1.0 VAR + 10.0 NTX, or 1.0 VAR + 15.0 NTX) at 1 hour prior to alcohol access for 10 consecutive days and the effects on alcohol intake were assessed.
Results
When administered alone, VAR in doses of 0.5 or 1.0 mg/kg BW did not alter alcohol intake but a dose of 2.0 mg/kg BW decreased alcohol intake. This effect disappeared when drug treatment was terminated. NTX in doses of 10.0 and 15.0 mg/kg BW did not alter alcohol intake but a dose of 20.0 mg/kg BW decreased alcohol intake. Combining low doses of VAR and NTX into a single medication reduced alcohol intake as well as did high doses of each drug alone. Reduced alcohol intake occurred immediately after onset of treatment with the combined medication and continued throughout prolonged treatment.
Conclusions
Low doses of VAR and NTX, when combined in a single medication, reduce alcohol intake in a rodent model of alcoholism. This approach has the advantage of reducing potential side effects associated with each drug. Lowering the dose of NTX and VAR in a combined treatment approach that maintains efficacy while reducing the incidence of negative side-effects may increase patient compliance and improve clinical outcomes for alcoholics and heavy drinkers who want to reduce their alcohol intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.