Problem/ConditionHeart disease is the leading cause of death in the United States. In 2015, heart disease accounted for approximately 630,000 deaths, representing one in four deaths in the United States. Although heart disease death rates decreased 68% for the total population from 1968 to 2015, marked disparities in decreases exist by race and state.Period Covered1968–2015.Description of SystemThe National Vital Statistics System (NVSS) data on deaths in the United States were abstracted for heart disease using diagnosis codes from the eighth, ninth, and tenth revisions of the International Classification of Diseases (ICD-8, ICD-9, and ICD-10) for 1968–2015. Population estimates were obtained from NVSS files. National and state-specific heart disease death rates for the total population and by race for adults aged ≥35 years were calculated for 1968–2015. National and state-specific black-white heart disease mortality ratios also were calculated. Death rates were age standardized to the 2000 U.S. standard population. Joinpoint regression was used to perform time trend analyses.ResultsFrom 1968 to 2015, heart disease death rates decreased for the total U.S. population among adults aged ≥35 years, from 1,034.5 to 327.2 per 100,000 population, respectively, with variations in the magnitude of decreases by race and state. Rates decreased for the total population an average of 2.4% per year, with greater average decreases among whites (2.4% per year) than blacks (2.2% per year).At the national level, heart disease death rates for blacks and whites were similar at the start of the study period (1968) but began to diverge in the late 1970s, when rates for blacks plateaued while rates for whites continued to decrease. Heart disease death rates among blacks remained higher than among whites for the remainder of the study period. Nationwide, the black-white ratio of heart disease death rates increased from 1.04 in 1968 to 1.21 in 2015, with large increases occurring during the 1970s and 1980s followed by small but steady increases until approximately 2005. Since 2005, modest decreases have occurred in the black-white ratio of heart disease death rates at the national level. The majority of states had increases in black-white mortality ratios from 1968 to 2015. The number of states with black-white mortality ratios >1 increased from 16 (40%) to 27 (67.5%). InterpretationAlthough heart disease death rates decreased both for blacks and whites from 1968 to 2015, substantial differences in decreases were found by race and state. At the national level and in most states, blacks experienced smaller decreases in heart disease death rates than whites for the majority of the period. Overall, the black-white disparity in heart disease death rates increased from 1968 to 2005, with a modest decrease from 2005 to 2015.Public Health ActionSince 1968, substantial increases have occurred in black-white disparities of heart disease death rates in the United States at the national level and in many states. These increases appear to be due to...
Background Although many studies have documented the dramatic declines in heart disease mortality in the United States at the national level, little attention has been given to the temporal changes in the geographic patterns of heart disease mortality. Methods and Results Age-adjusted and spatially smoothed county-level heart disease death rates were calculated for 2-year intervals from 1973 to 1974 to 2009 to 2010 for those aged ≥35 years. Heart disease deaths were defined according to the International Classification of Diseases codes for diseases of the heart in the eighth, ninth, and tenth revisions of the International Classification of Diseases. A fully Bayesian spatiotemporal model was used to produce precise rate estimates, even in counties with small populations. A substantial shift in the concentration of high-rate counties from the Northeast to the Deep South was observed, along with a concentration of slow-decline counties in the South and a nearly 2-fold increase in the geographic inequality among counties. Conclusions The dramatic change in the geographic patterns of heart disease mortality during 40 years highlights the importance of small-area surveillance to reveal patterns that are hidden at the national level, gives communities the historical context for understanding their current burden of heart disease, and provides important clues for understanding the determinants of the geographic disparities in heart disease mortality.
Racial residential segregation has been associated with an increased risk for heart disease and stroke deaths. However, there has been little research into the role that candidate mediating pathways may play in the relationship between segregation and heart disease or stroke deaths. In this study, we examined the relationship between metropolitan statistical area (MSA)-level segregation and heart disease and stroke mortality rates, by age and race, and also estimated the effects of various educational, economic, social, and health-care indicators (which we refer to as pathways) on this relationship. We used Poisson mixed models to assess the relationship between the isolation index in 265 U.S. MSAs and countylevel (heart disease, stroke) mortality rates. All models were stratified by race (non-Hispanic black, non-Hispanic white), age group (35-64 years, ≥65 years), and cause of death (heart disease, stroke). We included each potential pathway in the model separately to evaluate its effect on the segregation-mortality association. Among blacks, segregation was positively associated with heart disease mortality rates in both age groups but only with stroke mortality rates in the older age group. Among whites, segregation was marginally associated with heart disease mortality rates in the younger age group and was positively associated with heart disease mortality rates in the older age group. Three of the potential pathways we explored attenuated relationships between segregation and mortality rates among both blacks and whites: percentage of female-headed households, percentage of residents living in poverty, and median household income. Because the percentage of female-headed households can be seen as a proxy for the extent of social disorganization, our finding that it has the greatest attenuating effect on the relationship between racial segregation and heart disease and stroke mortality rates suggests that social disorganization may play a strong role in the elevated rates of heart disease and stroke found in racially segregated metropolitan areas.
Purpose To demonstrate the implications of choosing analytic methods for quantifying spatio-temporal trends, we compare the assumptions, implementation, and outcomes of popular methods using county-level heart disease mortality in the United States between 1973 and 2010. Methods We applied four regression-based approaches (joinpoint regression, both aspatial and spatial generalized linear mixed models, and Bayesian space-time model) and compared resulting inferences for geographic patterns of local estimates of annual percent change and associated uncertainty. Results The average local percent change in heart disease mortality from each method was −4.5%, with the Bayesian model having the smallest range of values. The associated uncertainty in percent change differed markedly across the methods, with the Bayesian space-time model producing the narrowest range of variance (0.0–0.8). The geographic pattern of percent change was consistent across methods with smaller declines in the south-central US and larger declines in the Northeast and Midwest. However, the geographic patterns of uncertainty differed markedly between methods. Conclusions The similarity of results, including geographic patterns, for magnitude of percent change across these methods validates the underlying spatial pattern of declines in heart disease mortality. However, marked differences in degree of uncertainty indicate that Bayesian modelling offers substantially more precise estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.