Background:
Current paradigms suggest that nitric oxide (NO) produced by endothelial cells (ECs) via endothelial nitric oxide synthase (eNOS) in the vessel wall is the primary regulator of blood flow and blood pressure. However, red blood cells (RBCs) also carry a catalytically active eNOS, but its role is controversial and remains undefined. This study aimed to elucidate the functional significance of red cell eNOS compared to EC eNOS for vascular hemodynamics and NO metabolism.
Methods:
We generated tissue-specific "loss-" and "gain-of-function" models for eNOS by using cell-specific Cre-induced gene inactivation or reactivation. We created two founder lines carrying a floxed eNOS (eNOS
flox/flox
) for Cre-inducible knock out (KO), as well as gene construct with an inactivated floxed/inverted exon (eNOS
inv/inv
) for a Cre-inducible knock in (KI), which respectively allow targeted deletion or reactivation of eNOS in erythroid cells (RBC eNOS KO or RBC eNOS KI mice) or endothelial cells (EC eNOS KO or EC eNOS KI mice). Vascular function, hemodynamics, and NO metabolism were compared
ex vivo
and
in vivo
.
Results:
The EC eNOS KOs exhibited significantly impaired aortic dilatory responses to acetylcholine, loss of flow-mediated dilation (FMD), and increased systolic and diastolic blood pressure. RBC eNOS KO mice showed no alterations in acetylcholine-mediated dilation or FMD but were hypertensive. Treatment with the NOS inhibitor L-NAME further increased blood pressure in RBC eNOS KOs, demonstrating that eNOS in both ECs and RBCs contributes to blood pressure regulation. While both EC eNOS KOs and RBC eNOS KOs had lower plasma nitrite and nitrate concentrations, the levels of bound NO in RBCs were lower in RBC eNOS KOs as compared to EC eNOS KOs. Crucially, reactivation of eNOS in ECs or RBCs rescues the hypertensive phenotype of the eNOS
inv/inv
mice, while the levels of bound NO were restored only in RBC eNOS KI mice.
Conclusions:
These data reveal that eNOS in ECs and RBCs contribute independently to blood pressure homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.