Dye-sensitized solar cells (DSSCs) offer new possibilities to harvest solar energy by using non-toxic inexpensive materials. Since they can generally be produced on flexible substrates, several research groups investigated possibilities to integrate DSSCs in textile fabrics, either by coating full fabrics with the DSSC layer structure or by producing fiber-shaped DSSCs which were afterwards integrated into a textile fabric. Here we show a new approach, electrospinning all solid layers of the DSSC. We report on electrospinning the counter electrode with a graphite catalyst followed by a thin nonconductive barrier layer and preparing the front electrode by electrospinning semiconducting TiO 2 from a polymer solution dyed with natural dyes. Both electrodes were coated with a conductive polymer before the system was finally filled with a fluid electrolyte. While the efficiency is lower than for glass-based cells, possible problems such as short-circuits-which often occur in fiber-based DSSCs-did not occur in this proof-of-concept. Since graphite particles did not fully cover the counter electrode in this first study, and the typical bathochromic shift indicating adsorption of dye molecules on the TiO 2 layer was not observed, several ways are open to increase the efficiency in forthcoming studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.