International audienceThe aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C.-4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of "anime" could be the process used to obtain Pb-antimonate opacified glass, for both productions studied.We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental condition
During the 18th Egyptian dynasty (1570-1292 B.C.), opaque white, blue and turquoise glasses were opacified by calcium antimonate crystals dispersed in a vitreous matrix. The technological processes as well as the antimony sources used to manufacture these crystals remain unknown. Our results shed a new light on glassmaking history: contrary to what was thought, we demonstrate that Egyptian glassmakers did not use in situ crystallization but first synthesized calcium antimonate opacifiers, which do not exist in nature, and then added them to a glass. Furthermore, using transmission electron microscopy (TEM) for the first time in the study of Egyptian opaque glasses, we show that these opacifiers were nano-crystals. Prior to this research, such a process for glassmaking has not been suggested for any kind of ancient opaque glass production. Studying various preparation methods for calcium antimonate, we propose that Egyptian craftsmen could have produced Ca 2 Sb 2 O 7 by using mixtures of Sb 2 O 3 or Sb 2 O 5 with calcium carbonates (atomic ratio Sb/Ca = 1) heat treated between 1000 and 1100°C. We developed an original strategy S. Lahlil ( ) · I. Biron · M. Cotte
International audienceThrough the study of lead antimonate based opacifiers in three opaque glass productions--Egyptian glass of the 18th dynasty (1570-1292 BC), Roman mosaic tesserae and beads from Aquilea and Rome (2nd c. BC-5th c. AD) and Nevers lampworking glass figures 18th c. AD)--this paper shows the evolution of lead antimonate production during different periods of History. We also show the necessity of using systematic micro-chemical analyses, with both high spatial and high energy resolution techniques to investigate these types of materials. The synchrotron-based m-XANES measurements combined with the microstructure observations (SEM and TEM), the chemical and structural analyses (EDX, WDS, m-Raman), is the first step to getting information on the raw materials used and the technological processes employed to produce lead antimonate. The heterogeneity from one sample to another but also within the same sample, and even further within a single crystal aggregate clearly shows that a production cannot be unambiguously associated to a single chemical composition. However, differences between the three productions are clearly highlighted and hypotheses about glass manufacturing are proposed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.