Background: Cultivation of microalgae in wastewater could significantly contribute to wastewater treatment, biodiesel production, and thus the transition to renewable energy. However, more information on effects of environmental factors, including light intensity, on their growth and composition (particularly fatty acid contents) is required. Therefore, we investigated the biomass and fatty acid production of four microalgal species, isolated in the Northern hemisphere and grown at three light intensities (50, 150 and 300 μE m −2 s −1). Results: Increases in light intensities resulted in higher biomass of all four species and, importantly, raised fatty acid contents of both Desmodesmus sp. and Scenedesmus obliquus. Fourier-transform IR spectrometry analysis showed that the increases in fatty acid content were associated with reductions in protein, but not carbohydrate, contents. Assessment of fatty acid composition revealed that increasing light intensity led to higher and lower contents of oleic (18:1) and linolenic (18:3) acids, respectively. The microalgae consumed more than 75% of the nitrogen and phosphorus present in the wastewater used as growth medium. Conclusion: The results show the importance of optimizing light intensities to improve fatty acid production by microalgae and their quality as sources of biodiesel. In addition, increase in fatty acid content is associated with decrease in protein content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.