Dominant mutations in five tRNA synthetases cause Charcot–Marie–Tooth (CMT) neuropathy, suggesting that altered aminoacylation function underlies the disease. However, previous studies showed that loss of aminoacylation activity is not required to cause CMT. Here we present a Drosophila model for CMT with mutations in glycyl-tRNA synthetase (GARS). Expression of three CMT-mutant GARS proteins induces defects in motor performance and motor and sensory neuron morphology, and shortens lifespan. Mutant GARS proteins display normal subcellular localization but markedly reduce global protein synthesis in motor and sensory neurons, or when ubiquitously expressed in adults, as revealed by FUNCAT and BONCAT. Translational slowdown is not attributable to altered tRNAGly aminoacylation, and cannot be rescued by Drosophila Gars overexpression, indicating a gain-of-toxic-function mechanism. Expression of CMT-mutant tyrosyl-tRNA synthetase also impairs translation, suggesting a common pathogenic mechanism. Finally, genetic reduction of translation is sufficient to induce CMT-like phenotypes, indicating a causal contribution of translational slowdown to CMT.
A special group of mitochondrial outer membrane proteins spans the membrane once, exposing soluble domains to both sides of the membrane. These proteins are synthesized in the cytosol and then inserted into the membrane by an unknown mechanism. To identify proteins that are involved in the biogenesis of the single-span model protein Mim1, we performed a high-throughput screen in yeast. Two interesting candidates were the cytosolic cochaperone Djp1 and the mitochondrial import receptor Tom70. Our results indeed demonstrate a direct interaction of newly synthesized Mim1 molecules with Tom70. We further observed lower steady-state levels of Mim1 in mitochondria from djp1⌬ and tom70 tom71⌬ cells and massive mislocalization of overexpressed GFP-Mim1 to the endoplasmic reticulum in the absence of Djp1. Importantly, these phenotypes were observed specifically for the deletion of DJP1 and were not detected in mutant cells lacking any of the other cytosolic cochaperones of the Hsp40 family. Furthermore, the djp1⌬ tom70⌬ tom71⌬ triple deletion resulted in a severe synthetic sick/lethal growth phenotype. Taking our results together, we identified Tom70 and Djp1 as crucial players in the biogenesis of Mim1. Moreover, the involvement of Djp1 provides a unique case of specificity between a cochaperone and its substrate protein.
Many cells in an organism are exposed to constant and acute mechanical stress that can induce plasma membrane injuries. These plasma membrane wounds have to be resealed rapidly to guarantee cell survival. Plasma membrane resealing in response to mechanical strain has been studied in some detail in muscle, where it is required for efficient recovery after insult. However, less is known about the capacity of other cell types and tissues to perform membrane repair and the underlying molecular mechanisms. Here we show that vascular endothelial cells, which are subject to profound mechanical burden, can reseal plasma membrane holes inflicted by laser ablation. Resealing in endothelial cells is a Ca-dependent process, as it is inhibited when cells are wounded in Ca-free medium. We also show that annexin A1 (AnxA1), AnxA2 and AnxA6, Ca-regulated membrane binding proteins previously implicated in membrane resealing in other cell types, are rapidly recruited to the site of plasma membrane injury. S100A11, a known protein ligand of AnxA1, is also recruited to endothelial plasma membrane wounds, albeit with a different kinetic. Mutant expression experiments reveal that Ca binding to AnxA2, the most abundant endothelial annexin, is required for translocation of the protein to the wound site. Furthermore, we show by knock-down and rescue experiments that AnxA2 is a positive regulator of plasma membrane resealing. Thus, vascular endothelial cells are capable of active, Ca-dependent plasma membrane resealing and this process requires the activity of AnxA2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.