To determine own upright body orientation the brain creates a sense of verticality by a combination of multisensory inputs. To test whether this process is affected by aging, we placed younger and older adults on a motion platform and systematically tilted the orientation of their visual surroundings by using an augmented reality setup. In a series of trials, participants adjusted the orientation of the platform until they perceived themselves to be upright. Tilting the visual scene around the roll axis induced a bias in subjective postural vertical determination in the direction of scene tilt in both groups. In the group of older participants, however, the observed peak bias was larger and occurred at larger visual tilt angles. This indicates that the susceptibility to visually induced biases increases with age, possibly caused by a reduced reliability of sensory information.
Lesions to posterior temporo-parietal brain regions are associated with deficits in perception of global, hierarchical shapes, but also impairments in the processing of objects presented under demanding viewing conditions. Evidence from neuroimaging studies and lesion patterns observed in patients with simultanagnosia and agnosia for object orientation suggest similar brain regions to be involved in perception of global shapes and processing of objects in atypical ('non-canonical') orientation. In a localizer experiment, we identified individual temporoparietal brain areas involved in global shape perception and found significantly higher BOLD signals during the processing of non-canonical compared to canonical objects. In a multivariate approach, we demonstrated that posterior temporo-parietal brain areas show distinct voxel patterns for non-canonical and canonical objects and that voxel patterns of global shapes are more similar to those of objects in non-canonical compared to canonical viewing conditions. These results suggest that temporo-parietal brain areas are not only involved in global shape perception but might serve a more general mechanism of complex object perception. Our results challenge a strict attribution of object processing to the ventral visual stream by suggesting specific dorsal contributions in more demanding viewing conditions. Keywords TPJ, object perception, view point, canonical, non-canonical Highlights• Posterior temporo-parietal brain areas in the TPJ region that are involved in global shape perception are significantly involved in object perception • Individual global shape TPJ ROIs identified with a specific localizer experiment prefer objects in non-canonical over objects in canonical orientations• Univariate activations and multivariate voxel patterns in global shape TPJ ROIs distinguish canonical and non-canonical object presentations 0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.