In mammalian cells, regulation of the expression of proteins involved in iron metabolism is achieved through interactions of iron-sensing proteins known as iron regulatory proteins (IRPs), with transcripts that contain RNA stem-loop structures referred to as iron responsive elements (IREs). Two distinct but highly homologous proteins, IRP1 and IRP2, bind IREs with high affinity when cells are depleted of iron, inhibiting translation of some transcripts, such as ferritin, or turnover of others, such as the transferrin receptor (TFRC). IRPs sense cytosolic iron levels and modify expression of proteins involved in iron uptake, export and sequestration according to the needs of individual cells. Here we generate mice with a targeted disruption of the gene encoding Irp2 (Ireb2). These mutant mice misregulate iron metabolism in the intestinal mucosa and the central nervous system. In adulthood, Ireb2(-/-) mice develop a movement disorder characterized by ataxia, bradykinesia and tremor. Significant accumulations of iron in white matter tracts and nuclei throughout the brain precede the onset of neurodegeneration and movement disorder symptoms by many months. Ferric iron accumulates in the cytosol of neurons and oligodendrocytes in distinctive regions of the brain. Abnormal accumulations of ferritin colocalize with iron accumulations in populations of neurons that degenerate, and iron-laden oligodendrocytes accumulate ubiquitin-positive inclusions. Thus, misregulation of iron metabolism leads to neurodegenerative disease in Ireb2(-/-) mice and may contribute to the pathogenesis of comparable human neurodegenerative diseases.
In mammals, iron regulatory proteins 1 and 2 (IRP1 and IRP2) posttranscriptionally regulate expression of several iron metabolism proteins including ferritin and transferrin receptor. Genetically engineered mice that lack IRP2, but have the normal complement of IRP1, develop adult-onset neurodegenerative disease associated with inappropriately high expression of ferritin in degenerating neurons. Here, we report that mice that are homozygous for a targeted deletion of IRP2 and heterozygous for a targeted deletion of IRP1 (IRP1+/- IRP2-/-) develop a much more severe form of neurodegeneration, characterized by widespread axonopathy and eventually by subtle vacuolization in several areas, particularly in the substantia nigra. Axonopathy develops in white matter tracts in which marked increases in ferric iron and ferritin expression are detected. Axonal degeneration is significant and widespread before evidence for abnormalities or loss of neuronal cell bodies can be detected. Ultimately, neuronal cell bodies degenerate in the substantia nigra and some other vulnerable areas, microglia are activated, and vacuoles appear. Mice manifest gait and motor impairment at stages when axonopathy is pronounced, but neuronal cell body loss is minimal. These observations suggest that therapeutic strategies that aim to revitalize neurons by treatment with neurotrophic factors may be of value in IRP2-/- and IRP1+/- IRP2-/- mouse models of neurodegeneration.
Previous studies have shown that IRP1 +/− IRP2 −/− knockout mice develop progressive neurodegenerative symptoms similar to those observed in human movement disorders such as Parkinson's disease. Histological investigations using optical microscopy show that these IRP knockout mice display accumulation of ferritin in axonal tracts in the brain, suggesting a possible role for excess ferritin in mediating axonal degeneration. Direct observation of the 3D distribution of ferritin by electron tomography indicates that ferritin amounts are increased by 3-to 4-fold in selected regions of the brain, and structural damage is observed within the axon as evidenced by the loss of the internal network of filaments, and the invaginations of neighboring oligodendrocyte membranes into the axonal medium. While optical microscopic investigations suggest that there is a large increase in ferritin in the presumptive axonal regions of the IRP knockout mice, electron tomographic studies reveal that most of the excess ferritin is localized to double-walled vesicular compartments which are present in the interior of the axon and appear to represent invaginations of the oligodendrocyte cells into the axon. The amount of ferritin observed in the axonal space of the knockout mice is at least 10-fold less than the amount of ferritin observed in wild-type mouse axons. The surprising conclusion from our analysis, therefore, is that despite the overall increase in ferritin levels in the knockout mouse brain, ferritin is absent from axons of degenerating neurons, suggesting that trafficking is compromised in early stages of this type of neuronal degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.