The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis.
Recently, we showed that the ubiquitin ligase E6AP stabilizes β-catenin and activates its transcriptional activity. These activities were enhanced by the human papillomavirus (HPV) E6 protein. In the present study, we explored the function of E6AP, which increases β-catenin stabilization and transcriptional activation. Here, we report that E6AP interacts with β-catenin and mediates its nonproteolytic ubiquitylation, as evidenced in transiently transfected cell-based and in vitro reconstitution ubiquitylation assays. Overexpression of E6AP increased β-catenin polyubiquitylation and, consistent with that, knockdown or knock-out of E6AP expression reduced β-catenin polyubiquitylation. The ubiquitylation of β-catenin by E6AP was dependent on its E3 ubiquitin ligase activity, but it was proteasome-independent and did not require HPV-E6, phosphorylation of β-catenin by glycogen synthase kinase 3β (GSK3β) or activity of the β-catenin 'destruction complex'. We also show that transcriptional activation of β-catenin by E6AP is coupled with β-catenin protein stabilization, but not its ubiquitylation. In contrast to β-catenin ubiquitylation, β-catenin protein stability and its transcriptional activity were absolutely dependent on the activity of the destruction complex and phosphorylation by GSK3β. Collectively, our data uncover a dual role for E6AP in the regulation of β-catenin ubiquitylation, stability and transcriptional activity, with HPV-E6 enhancing only part of E6AP activities.
We recently showed that E6 protein of human papillomavirus (HPV) 16, a mucosal high-risk α-PV type, can potentiate Wnt/β-catenin/TCF signaling. Here we investigated the transcriptional activities of E6 proteins of cutaneous HPV types from the β and α genera. Results from reporter-gene assays showed that similar to HPV16 E6, E6 of HPV10, a cutaneous α-HPV type that is prevalent in skin warts, efficiently enhances and stimulates Wnt/β-catenin/TCF transcription. HPV10 E6 also effectively elevated the expression levels of β-catenin and promoted its nuclear accumulation. E6 proteins of β-HPV types 8, 24, 38 and 49, which are prevalent in skin cancer, exhibited lower activities in all tested functions. The differences in activity correlated with E6's competence to interact with the ubiquitin ligase E6AP. This study reveals a role for E6 proteins of diverse cutaneous HPV types in potentiation of Wnt/β-catenin signaling, irrespective of their carcinogenic potential.
The vitamin K epoxide reductase (VKORC1) is a key enzyme in the vitamin K cycle impacting various biological processes. VKORC1 genetic variability has been extensively studied in the context of warfarin pharmacogenetics revealing different distributions of VKORC1 haplotypes in various populations. We previously identified the VKORC1 Asp36Tyr mutation that was associated with warfarin resistance and with distinctive ethnic distribution. In this study, we performed haplotype analysis using Asp36Tyr and seven other VKORC1 markers in Ashkenazi and Ethiopian-Jewish and non-Jewish individuals. The VKORC1 variability was represented by nine haplotypes (V1-V9) that could be grouped into two distinct clusters (V1-V3 and V4-V9) with intra-cluster difference limited to two nucleotide changes. Phylogeny analysis suggested that these haplotypes could have developed from an ancestral variant, the common V8 haplotype (40 % in all population samples), after ten single mutation events. Asp36Tyr was exclusive to the V5 haplotype of the second cluster. Two haplotypes V5 and V4, distinguished only by Asp36Tyr, were prevalent in both Ethiopian population samples. The V2 haplotype, belonging to the first cluster, was the second most prevalent haplotype in the Ashkenazi population sample (15.8 %) but relatively uncommon in the Ethiopian origin (4.5-4.7 %). We discuss the genetic diversity among studied populations and its potential impact on warfarin-dose management in certain populations of African and European origin.
Summary Pharmacogenetic dosing algorithms help predict warfarin maintenance doses, but their predictive performance differs in different populations, possibly due to unsuspected population-specific genetic variants. The objectives of this study were to quantify the effect of the VKORC1 D36Y variant (a marker of warfarin resistance previously described in 4% of Ashkenazi Jews) on warfarin maintenance doses and to examine how this variant affects the performance of the International Warfarin Pharmacogenetic Consortium (IWPC) dose prediction model. In 210 Israeli patients on chronic warfarin therapy recruited at a tertiary care center, we applied the IWPC model and then added D36Y genotype as covariate to the model (IWPC+D36Y) and compared predicted with actual doses. Median weekly warfarin dose was 35 mg (interquartile range [IQR], 24.5 to 52.5 mg). Among 16 heterozygous D36Y carriers (minor allele frequency = 3.8%), warfarin weekly dose was increased by a median of 43.7 mg (IQR, 40.5 to 47.2 mg) compared to non-carriers after adjustment for all IWPC parameters, a greater than 2-fold dose increase. The IWPC model performed suboptimally (coefficient of determination R2=27.0%; mean absolute error (MAE), 14.4 ± 16.2 mg/week). Accounting for D36Y genotype using the IWPC+D36Y model resulted in a significantly better model performance (R2=47.2%, MAE=12.6±12.4 mg/week). In conclusion, even at low frequencies, variants with a strong impact on warfarin dose may greatly decrease the performance of a commonly used dose prediction model. Unexpected discrepancies of the performance of universal prediction models in subpopulations should prompt searching for unsuspected confounders, including rare genetic variants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.