Chimeric antigen receptor (CAR) T cell therapy can achieve outstanding response rates in heavily pretreated patients with hematological malignancies. However, relapses occur and they limit the efficacy of this promising treatment approach. The cellular composition and immunophenotype of the administered CART cells play a crucial role for therapeutic success. Less differentiated CART cells are associated with improved expansion, long-term in vivo persistence, and prolonged anti-tumor control. Furthermore, the ratio between CD4+ and CD8+ T cells has an effect on the anti-tumor activity of CART cells. The composition of the final cell product is not only influenced by the CART cell construct, but also by the culturing conditions during ex vivo T cell expansion. This includes different T cell activation strategies, cytokine supplementation, and specific pathway inhibition for the differentiation blockade. The optimal production process is not yet defined. In this review, we will discuss the use of different CART cell production strategies and the molecular background for the generation of improved CART cells in detail.
Despite encouraging results with chimeric antigen receptor T (CART) cells, outcome can still be improved by optimization of the CART cell generation process. The proportion of less‐differentiated T cells within the transfused product is linked to enhanced in vivo CART cell expansion and long‐term persistence. The clinically approved PI3Kδ inhibitor idelalisib is well established in the treatment of B cell malignancies. Besides B cell receptor pathway inhibition, idelalisib can modulate T cell differentiation and function. Here, detailed longitudinal analysis of idelalisib‐induced effects on T cell phenotype and function was performed during CART cell production. A third generation CD19.CAR.CD28.CD137zeta CAR vector system was used. CART cells were generated from peripheral blood mononuclear cells of healthy donors (HDs) and chronic lymphocytic leukemia (CLL) patients. Idelalisib‐based CART cell generation resulted in an enrichment of less‐differentiated naïve‐like T cells (CD45RA+CCR7+), decreased expression of the exhaustion markers PD‐1 and Tim‐3, as well as upregulation of the lymph node homing marker CD62L. Idelalisib increased transduction efficiency, but did not impair viability and cell expansion. Strikingly, CD4:CD8 ratios that were altered in CART cells from CLL patients were approximated to ratios in HDs by idelalisib. Furthermore, in vivo efficacy of idelalisib‐treated CART cells was validated in a xenograft mouse model. Intracellular TNF‐α and IFN‐γ production decreased in presence of idelalisib. This effect was reversible after resting CART cells without idelalisib. In summary, PI3Kδ inhibition with idelalisib can improve CART cell products, particularly when derived from CLL patients. Further studies with idelalisib‐based CART cell generation protocols are warranted.
IntroductionTherapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (TN) vs. effector (TE) T cells, TN cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the TN/TE ratio of CART cells.Materials and methodsCART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays.ResultsIL-7/IL-15 preferentially induced differentiation into TN, stem cell memory (TSCM: naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (TEM), CD56+ and CD4+ T regulatory (TReg) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CARTN cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CARTN cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CARTN cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CARTN cells in untreated CLL patients. Final TN/TE ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CARTN expansion.ConclusionUntreated CLL patients might constitute a challenge for long-lasting CART effects in vivo since only a low number of TN among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the TN/TE ratio within the CART product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.