Multi-nuclear (1H, 2H, and 19F) magnetic resonance spectroscopy techniques as functions of temperature and pressure were applied to the study of selectively deuterated 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (EMIM TFSA) ionic liquid isotopologues and related ionic liquids. For EMIM TFSA, temperature-dependent 2H T1 data indicate stronger electric field gradients in the alkyl chain region compared to the imidazolium ring. Most significantly, the pressure dependences of the EMIM and TFSA self-diffusion coefficients revealed that the displacements of the cations and anions are independent, with diffusion of the TFSA anions being slowed much more by increasing pressure than for the EMIM cations, as shown by their respective activation volumes (28.8 ± 2.5 cm3/mol for TFSA vs. 14.6 ± 1.3 cm3/mol for EMIM). Increasing pressure may lower the mobility of the TFSA anion by hindering its interconversion between trans and cis conformers, a process that is coupled to diffusion according to published molecular dynamics simulations. Measured activation volumes (ΔV‡) for ion self-diffusion in EMIM bis(fluoromethylsulfonyl)amide and EMIM tetrafluoroborate support this hypothesis. In addition, 2H T1 data suggests increased ordering with increasing pressure, with two T1 regimes observed for the MD3 and D2 isotopologues between 0.1–100 and 100–250 MPa respectively. The activation volumes for T1 were 21 and 25 (0–100 MPa) and 11 and 12 (100–250 MPa) cm3/mol for the MD3 and D2 isotopologues, respectively.
Ionic mobility, the thermodynamics of ionic association, and the structure of associated species are studied in solutions of diglyme containing either lithium triflate or tetrabutylammonium triflate. Infrared spectroscopic, PFG NMR, thermodynamic, and crystallographic data suggest that the solute species existing in diglyme-lithium triflate are "free" ions, contact ion pairs, and dimers. Equilibrium constants, S(o), deltaH(o), and deltaG(o) are calculated for processes occurring between these species. In particular, the equilibrium constant, corrected for nonideality using a modified Debye-Hückel expression, is calculated for the dissociation of contact ion pairs into "free" cations and anions. A second equilibrium constant for the formation of dimers from contact ion pairs is also calculated; these constants do not significantly vary with salt concentration up to about 1.3 x 10(-3) mol cm(-3). The measured temperature dependence of equilibrium constants was used to calculate deltaH(o) and deltaS(o) for the two processes. The value of deltaS(o) = -102 J mol(-1) K(-1) for the dissociation of contact ion pairs shows that the large entropy decrease due to cation solvation outweighs the entropy increase due to dissociation of a contact ion pair. Ionic mobilities are calculated in lithium triflate-diglyme solutions using conductivity data in conjunction with information about the nature and concentrations of solute species obtained from IR spectroscopy. Mobilities in tetrabutlyammonium triflate-diglyme solutions are calculated directly from conductivity data. It was concluded that the concentration dependence of the molar conductivity is due in large part to the variation of the ion mobilities with concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.