Polarity shifting marked by various linguistic structures has been a challenge to automatic sentiment classification. In this paper, we propose a machine learning approach to incorporate polarity shifting information into a document-level sentiment classification system. First, a feature selection method is adopted to automatically generate the training data for a binary classifier on polarity shifting detection of sentences. Then, by using the obtained binary classifier, each document in the original polarity classification training data is split into two partitions, polarity-shifted and polarity-unshifted, which are used to train two base classifiers respectively for further classifier combination. The experimental results across four different domains demonstrate the effectiveness of our approach.
Sentiment classification has undergone significant development in recent years. However, most existing studies assume the balance between negative and positive samples, which may not be true in reality. In this paper, we investigate imbalanced sentiment classification instead. In particular, a novel clusteringbased stratified under-sampling framework and a centroiddirected smoothing strategy are proposed to address the imbalanced class and feature distribution problems respectively. Evaluation across different datasets shows the effectiveness of both the under-sampling framework and the smoothing strategy in handling the imbalanced problems in real sentiment classification applications.
Most theories of emotion treat recognition of a triggering cause event as an integral part of emotion processing. This paper proposes emotion cause detection as a new research area in emotion processing. As a first step toward fully automatic inference of emotion‐cause correlation, we propose a text‐driven, rule‐based approach to emotion cause detection in Chinese. First, we constructed a Chinese emotion cause annotated corpus based on our proposed annotation scheme. Next, we analyzed the corpus data, which yielded the identification of seven groups of linguistic cues and two sets of generalized linguistic rules for the detection of emotion causes. We then developed a rule‐based system for emotion cause detection based on the linguistic rules. In addition, we proposed an evaluation scheme with two phases for performance assessment. The results of our experiments show that our system achieved a promising performance for cause occurrence detection, as well as for cause event detection. The current study should lay the groundwork for future research on the inferences of implicit information and the discovery of new information based on cause‐event relation.
Sentiment and emotion classification have been popularly but separately studied in natural language processing. In this paper, we address joint learning on sentiment and emotion classification where both the labeled data for sentiment and emotion classification are available. The objective of this joint-learning is to benefit the two tasks from each other for improving their performances. Specifically, an extra data set that is annotated with both sentiment and emotion labels are employed to estimate the transformation probability between the two kinds of labels. Furthermore, the transformation probability is leveraged to transfer the classification labels to benefit the two tasks from each other. Empirical studies demonstrate the effectiveness of our approach for the novel joint learning task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.