Both ErbB1 and ErbB2 are overexpressed or amplified in breast tumours. To examine the effects of activating ErbB receptors in a context that mimics polarized epithelial cells in vivo, we activated ErbB1 and ErbB2 homodimers in preformed, growth-arrested mammary acini cultured in threedimensional basement membrane gels. Activation of ErbB2, but not that of ErbB1, led to a reinitiation of cell proliferation and altered the properties of mammary acinar structures. These altered structures share several properties with early-stage tumours, including a loss of proliferative suppression, an absence of lumen, retention of the basement membrane and a lack of invasive properties. ErbB2 activation also disrupted tight junctions and the cell polarity of polarized epithelia, whereas ErbB1 activation did not have any effect. Our results indicate that ErbB receptors differ in their ability to induce early stages of mammary carcinogenesis in vitro and this three-dimensional model system can reveal biological activities of oncogenes that cannot be examined in vitro in standard transformation assays.The mammary epithelium of an adult breast is organized into ducts and lobules. The ducts end in a highly branched structure referred to as the terminal ductal lobular unit (TDLU). A TDLU is comprised of multiple individual units referred to as mammary acini. Each acinus has a central lumen, a single layer of polarized luminal epithelial cells surrounded by myoepithelial cells, and a basement membrane.We have previously shown that human mammary epithelial cells (MECs) form acini-like structures containing a single layer of polarized, growth-arrested cells when grown within a matrix rich in laminin and collagen IV (Matrigel, derived from the Englebreth-Holm Swarm (EHS) tumour) 1,2 . The epithelial cells within acini in vivo and in culture have an apico-basal distribution of polarity markers such as ZO-1, E-cadherin and α 6 β 4 integrins. They also deposit collagen IV and secrete sialomucin in their basal and apical surfaces, respectively 1,2 , indicating that the acinar structures formed in culture closely mimic the acini in an adult breast.Early stages of breast cancer (hyperplasia and ductal carcinoma in situ (DCIS)) are characterized by an increased proliferation of epithelial cells, a loss of acinar organization and § Correspondence and requests for materials should be addressed to J.S.B. joan_brugge@hms.harvard.edu. † Present addresses: Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724, USA (S.K.M.); Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana 47907, USA (S.L.)Supplementary information is available on Nature Cell Biology's website (http://cellbio.nature.com) or as paper copy from the London editorial office of Nature Cell Biology. NIH Public Access Author ManuscriptNat Cell Biol. Author manuscript; available in PMC 2010 October 11. filling of the luminal space 3 . However, a lack of acinar organization and the acquisition of invasive behaviour are later events involved...
Tumor cells can evade chemotherapy by acquiring resistance to apoptosis. We investigated the molecular mechanism whereby malignant and nonmalignant mammary epithelial cells become insensitive to apoptosis. We show that regardless of growth status, formation of polarized, three-dimensional structures driven by basement membrane confers protection to apoptosis in both nonmalignant and malignant mammary epithelial cells. By contrast, irrespective of their malignant status, nonpolarized structures are sensitive to induction of apoptosis. Resistance to apoptosis requires ligation of beta4 integrins, which regulates tissue polarity, hemidesmosome formation, and NFkappaB activation. Expression of beta4 integrin that lacks the hemidesmosome targeting domain interferes with tissue polarity and NFkappaB activation and permits apoptosis. These results indicate that integrin-induced polarity may drive tumor cell resistance to apoptosis-inducing agents via effects on NFkappaB.
What determines the nuclear organization within a cell and whether this organization itself can impose cellular function within a tissue remains unknown. To explore the relationship between nuclear organization and tissue architecture and function, we used a model of human mammary epithelial cell acinar morphogenesis. When cultured within a reconstituted basement membrane (rBM), HMT-3522 cells form polarized and growth-arrested tissue-like acini with a central lumen and deposit an endogenous BM. We show that rBM-induced morphogenesis is accompanied by relocalization of the nuclear matrix proteins NuMA, splicing factor SRm160, and cell cycle regulator Rb. These proteins had distinct distribution patterns specific for proliferation, growth arrest, and acini formation, whereas the distribution of the nuclear lamina protein, lamin B, remained unchanged. NuMA relocalized to foci, which coalesced into larger assemblies as morphogenesis progressed. Perturbation of histone acetylation in the acini by trichostatin A treatment altered chromatin structure, disrupted NuMA foci, and induced cell proliferation. Moreover, treatment of transiently permeabilized acini with a NuMA antibody led to the disruption of NuMA foci, alteration of histone acetylation, activation of metalloproteases, and breakdown of the endogenous BM. These results experimentally demonstrate a dynamic interaction between the extracellular matrix, nuclear organization, and tissue phenotype. They further show that rather than passively ref lecting changes in gene expression, nuclear organization itself can modulate the cellular and tissue phenotype.The cell nucleus is organized by a nonchromatin internal structure referred to as the nuclear matrix (NM; refs. 1-3). Identified NM components include coiled-coil proteins (4), cell cycle regulators (5), tissue-specific transcription factors (6, 7), and RNA splicing factors (for review see ref.2). Although splicing factors have been shown to redistribute during cellular differentiation (8, 9) and following the induction of gene expression (10), spatial distribution of nuclear components are thought to be the consequence of changes in gene expression (8, 10, 11). However, whether NM composition and structure may themselves affect gene expression and cellular function has not been examined.To systematically study the effect of cell growth and tissue differentiation on nuclear organization, we used a reconstituted basement membrane (rBM)-directed model of mammary gland morphogenesis (12). The HMT-3522 human mammary epithelial cells (HMECs) were isolated from reduction mammoplasty and became immortalized in culture (13). When embedded within a rBM, these cells arrest growth, organize an endogenous BM, and form polarized acinus-like structures with vectorial secretion of sialomucin into a central lumen (12). We used this model to compare the nuclear organization of HMECs cultured on a plastic surface [two-dimensional (2D) monolayer] vs. a three-dimensional (3D) rBM. Nuclear organization was assessed by examini...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.