Bacterial species and their role in delaying the healing of pressure ulcers (PU) in spinal cord injury (SCI) patients have not been well described. This pilot study aimed to characterise the evolution of the cutaneous microbiota of PU in SCI cohort. Twenty-four patients with SCI from a French neurological rehabilitation centre were prospectively included. PU tissue biopsies were performed at baseline (D0) and 28 days (D28) and analysed using 16S rRNA gene-based sequencing analysis of the V3–V4 region. At D0, if the overall relative abundance of genus highlighted a large proportion of Staphylococcus, Anaerococcus and Finegoldia had a significantly higher relative abundance in wounds that stagnated or worsened in comparison with those improved at D28 (3.74% vs 0.05%; p = 0.015 and 11.02% versus 0.16%; p = 0.023, respectively). At D28, Proteus and Morganella genera were only present in stagnated or worsened wounds with respectively 0.02% (p = 0.003) and 0.01% (p = 0.02). Moreover, Proteus, Morganella, Anaerococcus and Peptoniphilus were associated within the same cluster, co-isolated from biopsies that had a poor evolution. This pathogroup could be a marker of wound degradation and Proteus could represent a promising target in PU management.
Plasmatic proteasome (p-proteasome) has recently been described as a new marker for metastatic melanoma. The objective of this study was to compare the diagnostic and prognostic values of p-proteasome with three other melanoma serological markers: S100B protein, melanoma inhibitory activity protein (MIA) and lactate dehydrogenase (LDH) in the plasma of 121 stage I-IV melanoma patients. Laboratory analyses were performed by standardized ELISA (p-proteasome, MIA), immunoluminometric assay (S100B) and colorimetry (LDH). We found that all markers were relevant for discriminating metastatic from nonmetastatic patients but p-proteasome displayed the highest diagnostic accuracy. P-proteasome and S100B were the most sensitive (58.1%) and p-proteasome and MIA the most specific (98.7 and 100%) in detecting metastatic disease. P-proteasome and S100B had the highest area under receiver operating characteristics curve, 0.811 (95% CI: 0.725-0.897) and 0.822 (95% CI: 0.738-0.906), respectively. These two markers were the best in detecting patients with lymph node metastases. S100B, MIA and LDH diagnostic accuracy was increased when these markers were combined with p-proteasome. As shown with univariate analysis, shorter progression-free and overall survival rates were significantly associated with elevated plasma levels of each markers. The multivariate Cox regression analysis identified p-proteasome as the only independent predictor of a poorer progression-free survival (p 5 0.030). In conclusion, this comparative study established that p-proteasome quantification in combination with other melanoma biomarkers is an attractive approach for the biological follow-up of melanoma patients.
Pneumonia due to Pneumocystis jirovecii (PCP) is a frequent infection among HIVThe performances of these PCR assays were also evaluated according to the classification of the probability of PCP (proven, probable, possible, or no final diagnosis of PCP) based on clinical and radiological signs as well as on the direct examination of bronchoalveolar lavage samples. In the proven PCP category, Pneumocystis jirovecii DNA was detected with all four assays. In the probable PCP category, the in-house PCR, AmpliSens, and the MycAssay PCR were positive for all samples, while the Bio-Evolution PCR failed to detect Pneumocystis jirovecii DNA in two samples. In the possible PCP category, the percentage of positive samples according to PCR varied from 54.5% to 86.4%. Detection of colonized patients is discussed. Finally, among the four evaluated PCR assays, one was not suitable for colonization detection but showed good performance in the proven and probable PCP groups. For the three other assays, performances were excellent and allowed detection of a very low fungal burden.
Background The collapsibility index of inferior vena cava (cIVC) is widely used to decide fluid infusion in spontaneously breathing intensive care unit patients. The authors hypothesized that high inspiratory efforts may induce false-positive high cIVC values. This study aims at determining a value of diaphragmatic motion recorded by echography that could predict a high cIVC (more than or equal to 40%) in healthy volunteers. Methods The cIVC and diaphragmatic motions were recorded for three levels of inspiratory efforts. Right and left diaphragmatic motions were defined as the maximal diaphragmatic excursions. Receiver operating characteristic curves evaluated the performance of right diaphragmatic motion to predict a cIVC more than or equal to 40% defining the best cutoff value. Results Among 52 included volunteers, interobserver reproducibility showed a generalized concordance correlation coefficient (ρc) above 0.9 for all echographic parameters. Right diaphragmatic motion correlated with cIVC (r = 0.64, P < 0.0001). Univariate analyses did not show association between cIVC and age, sex, weight, height, or body mass index. The area under the receiver operating characteristic curves for cIVC more than or equal to 40% was 0.87 (95% CI, 0.81 to 0.93). The best diaphragmatic motion cutoff was 28 mm (Youden Index, 0.65) with sensitivity of 89% and specificity of 77%. The gray zone area was 25 to 43 mm. Conclusions Inferior vena cava collapsibility is affected by diaphragmatic motion. During low inspiratory effort, diaphragmatic motion was less than 25 mm and predicted a cIVC less than 40%. During maximal inspiratory effort, diaphragmatic motion was more than 43 mm and predicted a cIVC more than 40%. When diaphragmatic motion ranged from 25 to 43 mm, no conclusion on cIVC value could be done.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.