PurposeHeat adaptation (HA) is critical to performance and health in a hot environment. Transition from short-term heat acclimatisation (STHA) to long-term heat acclimatisation (LTHA) is characterised by decreased autonomic disturbance and increased protection from thermal injury. A standard heat tolerance test (HTT) is recommended for validating exercise performance status, but any role in distinguishing STHA from LTHA is unreported. The aims of this study were to (1) define performance status by serial HTT during structured natural HA, (2) evaluate surrogate markers of autonomic activation, including heart rate variability (HRV), in relation to HA status.MethodsParticipants (n = 13) were assessed by HTT (60-min block-stepping, 50% VO2peak) during STHA (Day 2, 6 and 9) and LTHA (Day 23). Core temperature (Tc) and heart rate (HR) were measured every 5 min. Sampling for HRV indices (RMSSD, LF:HF) and sympathoadrenal blood measures (cortisol, nephrines) was undertaken before and after (POST) each HTT.ResultsSignificant (P < 0.05) interactions existed for Tc, logLF:HF, cortisol and nephrines (two-way ANOVA; HTT by Day). Relative to LTHA, POST results differed significantly for Tc (Day 2, 6 and 9), HR (Day 2), logRMSSD (Day 2 and Day 6), logLF:HF (Day 2 and Day 6), cortisol (Day 2) and nephrines (Day 2 and Day 9). POST differences in HRV (Day 6 vs. 23) were + 9.9% (logRMSSD) and − 18.6% (logLF:HF).ConclusionsEarly reductions in HR and cortisol characterised STHA, whereas LTHA showed diminished excitability by Tc, HRV and nephrine measures. Measurement of HRV may have potential to aid real-time assessment of readiness for activity in the heat.Electronic supplementary materialThe online version of this article (10.1007/s00421-017-3758-y) contains supplementary material, which is available to authorized users.
PurposeTo prevent heat-related illnesses, guidelines recommend limiting core body temperature (T c) ≤ 38 °C during thermal stress. Copeptin, a surrogate for arginine vasopressin secretion, could provide useful information about fluid balance, thermal strain and health risks. It was hypothesised that plasma copeptin would rise with dehydration from occupational heat stress, concurrent with sympathoadrenal activation and reduced glomerular filtration, and that these changes would reflect T c responses.MethodsVolunteers (n = 15) were recruited from a British Army unit deployed to East Africa. During a simulated combat assault (3.5 h, final ambient temperature 27 °C), T c was recorded by radiotelemetry to differentiate volunteers with maximum T c > 38 °C versus ≤ 38 °C. Blood was sampled beforehand and afterwards, for measurement of copeptin, cortisol, free normetanephrine, osmolality and creatinine.ResultsThere was a significant (P < 0.05) rise in copeptin from pre- to post-assault (10.0 ± 6.3 vs. 16.7 ± 9.6 pmol L−1, P < 0.001). Although osmolality did not increase, copeptin correlated strongly with osmolality after the exposure (r = 0.70, P = 0.004). In volunteers with maximum T c > 38 °C (n = 8) vs ≤ 38 °C (n = 7) there were significantly greater elevations in copeptin (10.4 vs. 2.4 pmol L−1) and creatinine (10 vs. 2 μmol L−1), but no differences in cortisol, free normetanephrine or osmolality.ConclusionsChanges in copeptin reflected T c response more closely than sympathoadrenal markers or osmolality. Dynamic relationships with tonicity and kidney function may help to explain this finding. As a surrogate for integrated physiological strain during work in a field environment, copeptin assay could inform future measures to prevent heat-related illnesses.
Acclimatization favors greater extracellular tonicity from lower sweat sodium, yet hyperosmolality may impair thermoregulation during heat stress. Enhanced secretion or action of vasopressin could mitigate this through increased free water retention. Aims were to determine responses of the vasopressin surrogate copeptin to dehydrating exercise and investigate its relationships with tonicity during short and long‐term acclimatization. Twenty‐three participants completed a structured exercise programme following arrival from a temperate to a hot climate. A Heat Tolerance Test (HTT) was conducted on Day‐2, 6, 9 and 23, consisting of 60‐min block‐stepping at 50% VO 2peak, with no fluid intake. Resting sweat [Na+] was measured by iontophoresis. Changes in body mass (sweat loss), core temperature, heart rate, osmolality (serum and urine) and copeptin and aldosterone (plasma) were measured with each Test. From Day 2 to Day 23, sweat [Na+] decreased significantly (adjusted P < 0.05) and core temperature and heart rate fell. Over the same interval, HTT‐associated excursions were increased for serum osmolality (5 [−1, 9] vs. 9 [5, 12] mosm·kg−1), did not differ for copeptin (9.6 [6.0, 15.0] vs. 7.9 [4.3, 14.7] pmol·L−1) and were reduced for aldosterone (602 [415, 946] vs. 347 [263, 537] pmol·L−1). Urine osmolality was unchanging and related consistently to copeptin at end‐exercise, whereas the association between copeptin and serum osmolality was right‐shifted (P = 0.0109) with acclimatization. Unchanging urine:serum osmolality argued against increased renal action of vasopressin. In conclusion, where exercise in the heat is performed without fluid replacement, heat acclimatization does not appear to enhance AVP‐mediated free water retention in humans.
Polar expeditions have been associated with changes in the hypothalamic-pituitarytesticular axis consistent with central hypogonadism (i.e. decreased testosterone, luteinising hormone [LH] and follicle stimulating hormone [FSH]). These changes are typically associated with body mass loss. Our aim was to evaluate whether maintenance of body mass during a Polar expedition could mitigate against the development of central hypogonadism. Maintenance of body mass and nutritional status appeared to negate the central hypogonadism previously reported from Polar expeditions. The elevated TSH and free T3were consistent with a previously reported "Polar T3 syndrome".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.