In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development.
To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells.
Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors’ gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although following injury the isolated segment of the spinal cord retains some capability of rhythmic movement the mechanisms involved in weight-bearing locomotion are distinct.
Developmental studies of spinal cord injury in which regrowth of axons occurs across the site of transection rarely distinguish between the recovery of motor-controlling pathways and that of ascending axons carrying sensory information. We describe the morphological changes that occur in the dorsal column (DC) of the grey short-tailed opossum, Monodelphis domestica, following spinal cord injury at two early developmental ages. The spinal cords of opossums that had had their mid-thoracic spinal cords completely transected at postnatal day 7 (P7) or P28 were analysed. Profiles of neurofilament immunoreactivity in transected cords showing DC development were differentially affected by the injury compared with the rest of the cord and cytoarchitecture was modified in an age- and site-dependent manner. The ability of DC neurites to grow across the site of transection was confirmed by injection of fluorescent tracer below the injury. P7 transected cords showed labelling in the DC above the site of original transection indicating that neurites of this sensory tract were able to span the injury. No growth of any neuronal processes was seen after P28 transection. Thus, DC is affected by spinal injury in a differential manner depending on the age at which the transection occurs. This age-differential response, together with other facets of remodelling that occur after neonatal spinal injury, might explain the locomotor adaptations and recovery observed in these animals.
Background: Most animal studies of spinal cord injury are conducted in quadrupeds, usually rodents. It is unclear to what extent functional results from such studies can be translated to bipedal species such as humans because bipedal and quadrupedal locomotion involve very different patterns of spinal control of muscle coordination. Bipedalism requires upright trunk stability and coordinated postural muscle control; it has been suggested that peripheral sensory input is less important in humans than quadrupeds for recovery of locomotion following spinal injury. Methods: We used an Australian macropod marsupial, the tammar wallaby (Macropus eugenii), because tammars exhibit an upright trunk posture, human-like alternating hindlimb movement when swimming and bipedal over-ground locomotion. Regulation of their muscle movements is more similar to humans than quadrupeds. At different postnatal (P) days (P7–60) tammars received a complete mid-thoracic spinal cord transection. Morphological repair, as well as functional use of hind limbs, was studied up to the time of their pouch exit. Results: Growth of axons across the lesion restored supraspinal innervation in animals injured up to 3 weeks of age but not in animals injured after 6 weeks of age. At initial pouch exit (P180), the young injured at P7-21 were able to hop on their hind limbs similar to age-matched controls and to swim albeit with a different stroke. Those animals injured at P40-45 appeared to be incapable of normal use of hind limbs even while still in the pouch. Conclusions: Data indicate that the characteristic over-ground locomotion of tammars provides a model in which regrowth of supraspinal connections across the site of injury can be studied in a bipedal animal. Forelimb weight-bearing motion and peripheral sensory input appear not to compensate for lack of hindlimb control, as occurs in quadrupeds. Tammars may be a more appropriate model for studies of therapeutic interventions relevant to humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.