More than 90% of the pesticides residues in apples are located in the peel. We developed a gas chromatography/ion trap tandem mass spectrometry method for investigating all detectable residues in the peel of 3 apple varieties. Sample preparation is based on the use of the Quick Easy Cheap Effective Rugged and Safe method on the whole fruit, the flesh, and the peel. Pesticide residues were quantified with solvent-matched and matrix-matched standards, by spiking apple sample extracts. Matrix effects dependent on the type of extract (fruit, flesh, or peel) and the apple variety were detected. The best data processing methods involved normalizing matrix effect rates by matrix-matched internal/external calibration. Boscalid, captan, chlorpyrifos, fludioxonil, and pyraclostrobin were the most frequently detected pesticides. However, their concentrations in the whole fruit were below European maximum residue levels. Despite negative matrix effects, the residues in peel were detected at concentrations up to 10 times higher than those in whole fruits. Consequently, other pesticide residues present at concentrations below the limit of quantification in the whole fruit were detected in the peel.
The sample matrix can enhance the gas chromatography signal of pesticide residues relative to that obtained with the same concentration of pesticide in solvent. This paper is related to negative matrix effects observed in coupled gas chromatography-mass spectrometry ion trap (GC/MS) quantification of pesticides in concentrated extracts of apple peel prepared by the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) method. It is focused on the pesticides most frequently used on the apple varieties studied, throughout the crop cycle, right up to harvest, to combat pests and diseases and to improve fruit storage properties. Extracts from the fleshy receptacle (flesh), the epiderm (peel) and fruit of three apple varieties were studied by high-performance thin-layer chromatography hyphenated with UV-vis light detection (HPTLC/UV visible). The peel extracts had high concentrations of triterpenic acids (oleanolic and ursolic acids), reaching 25mgkg, whereas these compounds were not detected in the flesh extracts (<0.05mgkg). A significant relationship has been found between the levels of these molecules and negative matrix effects in GC/MS. The differences in the behavior of pesticides with respect to matrix effects can be accounted for by the physicochemical characteristics of the molecules (lone pairs, labile hydrogen, conjugation). The HPTLC/UV visible method developed here for the characterization of QuEChERS extracts acts as a complementary clean-up method, aimed to decrease the negative matrix effects of such extracts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.