One of the consequences of rot on grapes is the development of volatile compounds giving fungal, mouldy or earthy odours. Among these compounds, (-)-geosmin (trans-1,10-dimethyl-trans-9-decalol), a powerful aromatic compound with an earthy smell is a persistent defect in grape juice and wines made with at least partially rotten grapes. A microbiota analysis of rotten grapes containing (-)-geosmin was carried out on sites from four French regions from 1999 to 2002, to clarify the involvement in geosmin appearance of Streptomyces spp. and Penicillium spp., two types of microorganisms present on grape, that are known for their ability to produce geosmin. In earthy grapes, Botrytis cinerea was largely present. Different species of Streptomyces were also isolated, but their pH sensitivity was an extremely limiting parameter for their development on grape juice, grapes or stem, and consequently for their potentiality to generate geosmin in the vineyard. Penicillium expansum, producing geosmin on a model medium, was omnipresent. Penicillium carneum, which is also a geosmin producer, was represented by a single colony during the 4 years of this study. P. expansum alone was able to produce geosmin on a model medium but not on grapes. However, after 7 days' pre-culture of some B. cinerea strains on grape juice, this juice became favourable to geosmin production by P. expansum. We demonstrated the necessary and complementary action of B. cinerea and P. expansum in geosmin production in grape juice and in crushed grape berries.
Stomatal behaviour in cucumber (Cucumis sativus L.) was analysed and modelled as a function of different greenhouse environmental parameters, under variable summer conditions. Solar radiation was the main regulating factor. During the day, large atmospheric vapour pressure deficit increased transpiration which was followed by a reduction in stomatal aperture, suggesting the presence of a feedback response to water stress. However, stomatal behaviour was more sensitive to high atmospheric vapour pressure deficit when this was accompanied by a rapid decrease of solar radiation. The response to the difference between leaf and air temperature was also influenced by air vapour pressure deficit and duration of plant exposure to high evaporative demand. Calculation of the crop water stress index showed that the air vapour pressure deficit of 1 kPa used in the control treatment probably caused water stress and induced some hardening, a necessary condition for adaptation to summer climate in southern Europe. The importance of the interaction between climatic parameters and plant response in greenhouse environmental management is analysed. Classical models of stomatal resistance are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.