The alveolar surface of the lung is a major target for oxidant injury, and its repair following injury is dependent on the ability of its stem cells, the type 2 cells, to initiate proliferation. From previous studies it is likely that events located before the entry into the S phase of the cell cycle and involving several components of the insulin-like growth factor system as well as of transforming growth factor- (TGF-) play a key role in growth regulation of oxidant-exposed type 2 epithelial cells. To gain further insights into these mechanisms, we explored the effects of O 2 exposure on G 1 cyclins and their cyclin-dependent kinases (CDKs). We documented an increased expression of these genes in O 2 -treated type 2 cells. However, despite this induction, a dramatic decrease in cyclin E-CDK2 activity, but not in cyclin D-CDK4 activity, was found. The concomitant induction of CDK inhibitory proteins (CKIs), mainly p21 CIP1 , suggests that accumulation of inactive cyclin E-CDK2 activity is due to CKI binding. We also provided evidence that the mechanisms regulating this process involved TGF- as anti-TGF- antibody treatment was able to reduce the oxidant-induced inhibition of cyclin E-CDK2 activity. Taken together, these results suggest that oxidants may block entry into S phase by acting on a subset of late G 1 events whose alterations are sufficient to impair the activation of cyclin E-CDK2 complexes.
Retinoids, including retinol and retinoic acid (RA) derivatives, are important molecules for lung growth and homeostasis. The presence of RA receptors and of RA-binding proteins in the alveolar epithelium led to suggest a role for RA on alveolar epithelial cell replication. In the present study, we examined the effects of RA on proliferation of the stem cells of the alveolar epithelium, the type 2 cells. We showed that treatment of serum-deprived type 2 cells with RA led to a stimulation of cell proliferation, with an increase in cell number in a dose-dependent manner. To gain some insights into the mechanisms involved, we studied the effects of RA on the expression of several components of the insulin-like growth factor (IGF) system that have been shown to be associated with the growth arrest of type 2 cells, mainly the IGF-binding protein-2 (IGFBP-2), IGF-II, and the type 2 IGF receptor. We documented a marked decrease in the expression of these components upon RA treatment. Using conditioned media from RA-treated cells, we provided evidence that the proliferative response of type 2 cells to RA was mediated through production of growth factor(s) distinct from IGF-I. We also showed that RA was able to reduce the decrease in cell number observed when type 2 cells were treated with transforming growth factor (TGF)-β1. These results together with the known stimulatory effect of TGF-β1 on IGFBP-2 expression led to suggest that RA may be associated with type 2 cell proliferation through mechanisms interfering with the TGF-β1 pathway.
Oxygen (O(2)) species are involved in a large variety of pulmonary diseases. Among the various cell types that compose the lung, the epithelial cells of the alveolar structure appear to be a major target for oxidant injury. Despite their importance in the repair processes, the mechanisms which regulate the replication of the stem cells of the alveolar epithelium, the type 2 cells, remain poorly understood. Based on the results of several studies which have documented the involvement of the insulin-like growth factor (IGF) system in lung epithelial cell replication, and which have also suggested a role for IGF binding proteins (IGFBPs) in the control of cell proliferation, the aim of the present work was to determine whether IGFBPs could be involved in the modulation of growth of human lung epithelial cells exposed to oxidants. Experiments were performed using a human lung adenocarcinoma cell line (A549) which was exposed for various durations to hyperoxia (95% O(2)). We observed a rapid and reversible growth arrest of the cells after only 24 h of O(2) exposure. When oxidant injury was prolonged, growth arrest was followed by induction of apoptosis with activation of the Fas pathway. These effects were associated with an increased expression of IGFBP-2 and IGFBP-3. In addition, study of localization of these proteins revealed distinct patterns of distribution. IGFBP-3 was mainly present in the extracellular compartment. In comparison, the fraction of IGFBP-2 secreted was less abundant whereas the IGFBP-2 fraction in the intracellular compartment appeared stronger. In addition, analysis of the subcellular localization provided data indicating the presence of IGFBP-2 in the nucleus. Taken together these data support a role for IGFBP-2 and IGFBP-3 in the processes of growth arrest and apoptosis in lung epithelial cells upon oxidant exposure. They also suggest that distinct mechanisms may link IGFBP-2 and IGFBP-3 to the key regulators of the cell cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.