Pak5 is the most recently identified and least understood member of the p21-activated kinase (Pak) family. This kinase is known to promote neurite outgrowth in vitro, but its localization, substrates, and effects on cell survival have not been reported. We show here that Pak5 has unique properties that distinguish it from all other members of the Pak family. First, Pak5, unlike Pak1, cannot complement an STE20 mutation in Saccharomyces cerevisiae. Second, Pak5 binds to the GTPases Cdc42 and Rac, but these GTPases do not regulate Pak5 kinase activity, which is constitutive and stronger than any other Pak. Third, Pak5 prevents apoptosis induced by camptothecin and C2-ceramide by phosphorylating BAD on Ser-112 in a protein kinase A-independent manner and prevents the localization of BAD to mitochondria, thereby inhibiting the apoptotic cascade that leads to apoptosis. Finally, we show that Pak5 itself is constitutively localized to mitochondria, and that this localization is independent of kinase activity or Cdc42 binding. These features make Pak5 unique among the Pak family and suggest that it plays an important role in apoptosis through BAD phosphorylation.
The immunosurveillance mechanisms governing high-risk neuroblastoma (HR-NB), a major pediatric malignancy, have been elusive. We identify a potential role for natural killer (NK) cells, in particular the interaction between the NK receptor NKp30 and its ligand, B7-H6, in the metastatic progression and survival of HR-NB after myeloablative multimodal chemotherapy and stem cell transplantation. NB cells expressing the NKp30 ligand B7-H6 stimulated NK cells in an NKp30-dependent manner. Serum concentration of soluble B7-H6 correlated with the down-regulation of NKp30, bone marrow metastases, and chemoresistance, and soluble B7-H6 contained in the serum of HR-NB patients inhibited NK cell functions in vitro. The expression of distinct NKp30 isoforms affecting the polarization of NK cell functions correlated with 10-year event-free survival in three independent cohorts of HR-NB in remission from metastases after induction chemotherapy (n = 196, P < 0.001), adding prognostic value to known risk factors such as N-Myc amplification and age >18 months. We conclude that the interaction between NKp30 and B7-H6 may contribute to the fate of NB patients and that both the expression of NKp30 isoforms on circulating NK cells and the concentration of soluble B7-H6 in the serum may be clinically useful as biomarkers for risk stratification.
The function of BAD, a proapoptotic member of the Bcl-2 family, is regulated primarily by rapid changes in phosphorylation that modulate its protein-protein interactions and subcellular localization. We show here that, during interleukin-3 (IL-3) deprivation-induced apoptosis of 32Dcl3 murine myeloid precursor cells, BAD is cleaved by a caspase(s) at its N terminus to generate a 15-kDa truncated protein. The 15-kDa truncated BAD is a more potent inducer of apoptosis than the wild-type protein, whereas a mutant BAD resistant to caspase 3 cleavage is a weak apoptosis inducer. Truncated BAD is detectable only in the mitochondrial fraction, interacts with BCL-X L at least as effectively as the wild-type protein, and is more potent than wild-type BAD in inducing cytochrome c release. Human BAD, which is 43 amino acids shorter than its mouse counterpart, is also cleaved by a caspase(s) upon exposure of Jurkat T cells to anti-FAS antibody, tumor necrosis factor alpha (TNF-␣), or TRAIL. Moreover, a truncated form of human BAD lacking the N-terminal 28 amino acids is more potent than wild-type BAD in inducing apoptosis. The generation of truncated BAD was blocked by Bcl-2 in IL-3-deprived 32Dcl3 cells but not in Jurkat T cells exposed to anti-FAS antibody, TNF-␣, or TRAIL. Together, these findings point to a novel and important role for BAD in maintaining the apoptotic phenotype in response to various apoptosis inducers.
MAPPYACTS (NCT02613962) is an international prospective precision medicine trial aiming to define tumor molecular profiles in pediatric patients with recurrent/refractory malignancies, in order to suggest the most adapted salvage treatment. From February 2016 to July 2020, 787 patients were included in France, Italy, Ireland and Spain. At least one genetic alteration leading to targeted treatment suggestion was identified in 436 patients (69%) with successful sequencing; 10% of these were considered "ready for routine use". Of 356 patients with follow-up beyond 12 months, 107 (30%) received one or more matched targeted therapies, 56% of them within early clinical trials, mainly in the AcSé-ESMART platform trial (NCT02813135). Overall, matched treatment resulted in a 17% objective response rate, those of patients with "ready for routine use" alterations was 38%. In patients with extra-cerebral tumors, 76% of actionable alterations detected in tumor tissue were also identified in circulating cell free DNA (cfDNA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.