JAK2, a member of the Janus kinase (JAK) family of protein tyrosine kinases (PTKs), is an important intracellular mediator of cytokine signaling. Mutations of the JAK2 gene are associated with hematologic cancers, and aberrant JAK activity is also associated with a number of immune diseases, including rheumatoid arthritis. Accordingly, the development of JAK2-specific inhibitors has tremendous clinical relevance. Critical to the function of JAK2 is its PTK domain. We report the 2.0 Å crystal structure of the active conformation of the JAK2 PTK domain in complex with a high-affinity, pan-JAK inhibitor that appears to bind via an induced fit mechanism. This inhibitor, the tetracyclic pyridone 2-tert-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-1, was buried deep within a constricted ATP-binding site, in which extensive interactions, including residues that are unique to JAK2 and the JAK family, are made with the inhibitor. We present a structural basis of high-affinity JAK-specific inhibition that will undoubtedly provide an invaluable tool for the further design of novel, potent, and specific therapeutics against the JAK family. IntroductionThe Janus kinases (JAKs) are an important family of intracellular protein tyrosine kinases (PTKs), with 4 mammalian members, JAK1, JAK2, JAK3, and TYK2, 1-5 as well as homologs in chicken, 6 fish, 7 and Drosophila. 8 The JAKs play critical roles in several important intracellular signaling pathways, including the eponymous JAK/STAT pathway, 9 central to the mediation of cytokine signaling. 10,11 It is this pivotal role in cytokine signaling that underpins the notion that specific JAK inhibitors may be therapeutically deployed in situations where cytokine activity results in disease. Important examples of this include autoimmune diseases such as rheumatoid arthritis and psoriasis, 12,13 myeloproliferative syndromes such as polycythemia vera, 14-17 leukemias, 18-20 lymphomas, 21 and cardiovascular disease 22,23 inter alia.Members of the JAK family each share a characteristic domain structure, 2 with a C-terminal PTK domain (known as the JAK homology-1 [JH1] domain), immediately adjacent to a kinase-like domain (JH2), and 5 additional JAK homology domains (JH3-JH7). While the JH2 domain appears to possess an important regulatory role on the PTK activity of the JH1 domain, 24-29 the precise mechanism by which this control is exerted is currently poorly understood. The role of a putative SH2-like domain (JH3/JH4) 2,30 is also unknown at present, whereas the function of a well-defined band F ezrin-radixin-moesin homology (FERM) domain (JH7) 31,32 appears to be critical for interaction of the JAKs with their cognate receptors and regulatory proteins.The JAKs coordinate specifically to different receptors, for example, JAK3 appears to be associated with cytokine receptors that include the ␥c chain of the interleukin-2 (IL-2) receptor (eg, IL-4, IL-7, etc), whereas JAK2 is associated with a wide range of cytokine receptors, including those activated by growth horm...
Celiac disease is a human leukocyte antigen (HLA)-DQ2- and/or DQ8-associated T cell-mediated disorder that is induced by dietary gluten. Although it is established how gluten peptides bind HLA-DQ8 and HLA-DQ2, it is unclear how such peptide-HLA complexes are engaged by the T cell receptor (TCR), a recognition event that triggers disease pathology. We show that biased TCR usage (TRBV9(∗)01) underpins the recognition of HLA-DQ8-α-I-gliadin. The structure of a prototypical TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin complex shows that the TCR docks centrally above HLA-DQ8-α-I-gliadin, in which all complementarity-determining region-β (CDRβ) loops interact with the gliadin peptide. Mutagenesis at the TRBV9(∗)01-TCR-HLA-DQ8-α-I-gliadin interface provides an energetic basis for the Vβ bias. Moreover, CDR3 diversity accounts for TRBV9(∗)01(+) TCRs exhibiting differing reactivities toward the gliadin epitopes at various deamidation states. Accordingly, biased TCR usage is an important factor in the pathogenesis of DQ8-mediated celiac disease.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 are members of a discrete family of cytokines that regulates the growth, differentiation, migration and effector function activities of many hematopoietic cells and immunocytes. These cytokines are involved in normal responses to infectious agents, bridging innate and adaptive immunity. However, in certain cases, the overexpression of these cytokines or their receptors can lead to excessive or aberrant initiation of signaling resulting in pathological conditions, with chronic inflammatory diseases and myeloid leukemias the most notable examples. Recent crystal structures of the GM-CSF receptor ternary complex and the IL-5 binary complex have revealed new paradigms of cytokine receptor activation. Together with a wealth of associated structure-function studies, they have significantly enhanced our understanding of how these receptors recognize cytokines and initiate signals across cell membranes. Importantly, these structures provide opportunities for structure-based approaches for the discovery of novel and disease-specific therapeutics. In addition, recent biochemical evidence has suggested that the GM-CSF/IL-3/IL-5 receptor family is capable of interacting productively with other membrane proteins at the cell surface. Such interactions may afford additional or unique biological activities and might be harnessed for selective modulation of the function of these receptors in disease.
The GM-CSF, IL-3 and IL-5 family of cytokines, also known as the βc family due to their receptors sharing the signalling subunit βc, regulates multiple biological processes such as native and adaptive immunity, inflammation, normal and malignant hemopoieis, and autoimmunity. Australian scientists played a major role in the discovery and biological characterisation of the βc cytokines and their recent work is revealing unique features of cytokine receptor assembly and signalling. Furthermore, specific antibodies have been generated to modulate their function. Characterisation of the structural and dynamic requirements for the activation of the βc receptor family and the molecular definition of downstream signalling pathways are providing new insights into cytokine receptor signalling as well as new therapeutic opportunities.
The GM-CSF, IL-3, and IL-5 receptors constitute the βc family, playing important roles in inflammation, autoimmunity, and cancer. Typical of heterodimeric type I cytokine receptors, signaling requires recruitment of the shared subunit to the initial cytokine:α subunit binary complex through an affinity conversion mechanism. This critical process is poorly understood due to the paucity of crystal structures of both binary and ternary receptor complexes for the same cytokine. We have now solved the structure of the binary GM-CSF:GMRα complex at 2.8-Å resolution and compared it with the structure of the ternary complex, revealing distinct conformational changes. Guided by these differences we performed mutational and functional studies that, importantly, show GMRα interactions playing a major role in receptor signaling while βc interactions control high-affinity binding. These results support the notion that conformational changes underlie the mechanism of GM-CSF receptor activation and also suggest how related type I cytokine receptors signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.