Increased anthropogenic inputs of nitrogen (N) to the biosphere during the last few decades have resulted in increased groundwater and surface water concentrations of N (primarily as nitrate), posing a global problem. Although measures have been implemented to reduce N inputs, they have not always led to decreasing riverine nitrate concentrations and loads. This limited response to the measures can either be caused by the accumulation of organic N in the soils (biogeochemical legacy) -or by long travel times (TTs) of inorganic N to the streams (hydrological legacy). Here, we compare atmospheric and agricultural N inputs with longterm observations of riverine nitrate concentrations and loads in a central German mesoscale catchment with three nested subcatchments of increasing agricultural land use. Based on a data-driven approach, we assess jointly the N budget and the effective TTs of N through the soil and groundwater compartments. In combination with long-term trajectories of the C-Q relationships, we evaluate the potential for and the characteristics of an N legacy.We show that in the 40-year-long observation period, the catchment (270 km 2 ) with 60 % agricultural area received an N input of 53 437 t, while it exported 6592 t, indicating an overall retention of 88 %. Removal of N by denitrification could not sufficiently explain this imbalance. Log-normal travel time distributions (TTDs) that link the N input history to the riverine export differed seasonally, with modes spanning 7-22 years and the mean TTs being systematically shorter during the high-flow season as compared to low-flow conditions. Systematic shifts in the C-Q relationships were noticed over time that could be attributed to strong changes in N inputs resulting from agricultural intensification before 1989, the break-down of East German agriculture after 1989 and the seasonal differences in TTs. A chemostatic export regime of nitrate was only found after several years of stabilized N inputs. The changes in C-Q relationships suggest a dominance of the hydrological N legacy over the biogeochemical N fixation in the soils, as we expected to observe a stronger and even increasing dampening of the riverine N concentrations after sustained high N inputs. Our analyses reveal an imbalance between N input and output, long timelags and a lack of significant denitrification in the catchment. All these suggest that catchment management needs to address both a longer-term reduction of N inputs and shorterterm mitigation of today's high N loads. The latter may be covered by interventions triggering denitrification, such as hedgerows around agricultural fields, riparian buffers zones or constructed wetlands. Further joint analyses of N budgets and TTs covering a higher variety of catchments will provide a deeper insight into N trajectories and their controlling parameters.
Elevated nitrogen (N) concentrations have detrimental effects on aquatic ecosystems worldwide, calling for effective management practices. However, catchment-scale annual mass-balance estimates often exhibit N deficits and time lags between the trajectory of net N inputs and that of N riverine export. Here, we analyzed 40-year time series of N surplus and nitrate-N loads in 16 mesoscale catchments (104–10 135 km2) of a temperate agricultural region, with the aim to (1) investigate the fate of the ‘missing N’, either still in transit through the soil—vadose zone—groundwater continuum or removed via denitrification, and (2) estimate the transit time distribution of N by convoluting the input signal with a lognormal model. We found that apparent N retention, the ‘missing N’, ranged from 45%–88% of then N net input, and that topsoil N accumulation alone accounted for ca. two-thirds of this retention. The mode of the nitrate-N transit time distribution ranged from 2–14 years and was negatively correlated with the estimated retention. Apparent retention was controlled primarily by average runoff, while the transit time mode was controlled in part by lithology. We conclude that the fate of the soil ‘biogeochemical legacy’, which represents much of the catchment-scale ‘missing N’, is in our hands, since the N accumulated in soils can still be recycled in agroecosystems.
Nitrogen (N) can be a limiting nutrient in terrestrial, freshwater, and marine ecosystems (Webster et al., 2003). However, the N cycling in these ecosystems is modified and disturbed by humans through inputs from atmospheric deposition, agricultural fertilizers and wastewater. High N inputs especially in economically developed countries have led to increased riverine nitrogen fluxes, causing ecological degradation in aquatic systems and posing a threat to drinking water safety (Dupas et al., 2016;Sebilo et al., 2013;Wassenaar, 1995). Diffuse agricultural sources (mineral fertilizer and manure) constitute most of the N emissions into waters in European countries (Bouraoui & Grizzetti, 2011;Dupas et al., 2013).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.