Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.DOI: http://dx.doi.org/10.7554/eLife.26464.001
Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the ageassociated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of agerelated neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and postsynaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.
Background Sarcopenia, the age-related loss of skeletal muscle, is a side effect of androgen deprivation therapy (ADT) for prostate cancer patients. Resident stem cells of skeletal muscle, satellite cells (SCs), are an essential source of progenitors for the growth and regeneration of skeletal muscle. Decreased androgen signaling and deficits in the number and function of SCs are features of aging. Although androgen signaling is known to regulate skeletal muscle, the cellular basis for ADT-induced exacerbation of sarcopenia is unknown. Furthermore, the consequences of androgen deprivation on SC fate in adult skeletal muscle remain largely unexplored. Methods We examined SC fate in an androgen-deprived environment using immunofluorescence and fluorescence-activated cell sorting (FACS) with SC-specific markers in young castrated mice. To study the effects of androgen deprivation on SC function and skeletal muscle regenerative capacity, young castrated mice were subjected to experimental regenerative paradigms. SC-derived-cell contributions to skeletal muscle maintenance were examined in castrated Pax7CreER/+; ROSA26mTmG/+ mice. SCs were depleted in Pax7CreER/+; ROSA26DTA/+ mice to ascertain the consequences of SC ablation in sham and castrated skeletal muscles. Confocal immunofluorescence analysis of neuromuscular junctions (NMJs), and assessment of skeletal muscle physiology, contractile properties, and integrity were conducted. Results Castration led to SC activation, however this did not result in a decline in SC function or skeletal muscle regenerative capacity. Surprisingly, castration induced SC-dependent maintenance of young skeletal muscle. The functional dependence of skeletal muscles on SCs in young castrated mice was demonstrated by an increase in SC-derived-cell fusion within skeletal muscle fibers. SC depletion was associated with further atrophy and functional decline, as well as the induction of partial innervation and the loss of NMJ-associated myonuclei in skeletal muscles from castrated mice. Conclusion The maintenance of skeletal muscles in young castrated mice relies on the cellular contributions of SCs. Considering the well-described age-related decline in SCs, the results in this study highlight the need to devise strategies that promote SC maintenance and activity to attenuate or reverse the progression of sarcopenia in elderly androgen-deprived individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.