An original approach is proposed to investigate inorganic (iHg) and methylmercury (MeHg) trophic transfer and fate in a model fish, Danio rerio, by combining natural isotopic fractionation and speciation. Animals were exposed to three different dietary conditions: (1) 50 ng Hg g(-1), 80% as MeHg; (2) diet enriched in MeHg 10,000 ng Hg g(-1), 95% as MeHg, and (3) diet enriched in iHg 10,000 ng Hg g(-1), 99% as iHg. Harvesting was carried out after 0, 7, 25, and 62 days. Time-dependent Hg species distribution and isotopic fractionation in fish organs (muscle, brain, liver) and feces, exhibited different patterns, as a consequence of their dissimilar metabolization. The rapid isotopic re-equilibration to the new MeHg-food source reflects its high bioaccumulation rate. Relevant aspects related to Hg excretion are also described. This study confirms Hg isotopic fractionation as a powerful tool to investigate biological processes, although its deconvolution and fully understanding is still a challenge.
A multidisciplinary approach is proposed here to compare toxicity mechanisms of methylmercury (MeHg) and inorganic mercury (iHg) in muscle, liver, and brain from zebrafish (Danio rerio). Animals were dietary exposed to (1) 50 ng Hg g(-1), 80% as MeHg; (2) diet enriched in MeHg 10000 ng Hg g(-1), 95% as MeHg; (3) diet enriched in iHg 10000 ng Hg g(-1), 99% as iHg, for two months. Hg species specific bioaccumulation pathways were highlighted, with a preferential bioaccumulation of MeHg in brain and iHg in liver. In the same way, differences in genetic pattern were observed for both Hg species, (an early genetic response (7 days) for both species in the three organs and a late genetic response (62 days) for iHg) and revealed a dissimilar metabolization of both Hg species. Among the 18 studied genes involved in key metabolic pathways of the cell, major genetic responses were observed in muscle. Electron microscopy revealed damage mainly because of MeHg in muscle and also in liver tissue. In brain, high MeHg and iHg concentrations induced metallothionein production. Finally, the importance of the fish origin in ecotoxicological studies, here the seventh descent of a zebrafish line, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.