Natural killer (NK) cells recognize the absence of self MHC class I as a way to discriminate normal cells from cells in distress. In humans, this "missing self" recognition is ensured by inhibitory receptors such as KIR, which dampen NK cell activation upon interaction with their MHC class I ligands. We show here that NK cells lacking inhibitory KIR for self MHC class I molecules are present in human peripheral blood. These cells harbor a mature NK cell phenotype but are hyporesponsive to various stimuli, including MHC class I-deficient target cells. This response is in contrast to NK cells that express a single inhibitory KIR specific for self MHC class I, which are functionally competent when exposed to the same stimuli. These results show the involvement of KIR-MHC class I interactions in the calibration of NK cell effector capacities, suggesting its role in the subsequent "missing self" recognition.
SummaryCheckpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.
KARAP/DAP12 is a transmembrane polypeptide with an intracytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). KARAP/DAP12 is associated with several activating cell surface receptors in hematopoietic cells. Here, we report that knockin mice bearing a nonfunctional KARAP/DAP12 ITAM present altered innate immune responses. Although in these mice NK cells are present and their repertoire of inhibitory MHC class I receptors is intact, the NK cell spectrum of natural cytotoxicity toward tumor cell targets is restricted. KARAP/DAP12 loss-of-function mutant mice also exhibit a dramatic accumulation of dendritic cells in muco-cutaneous epithelia, associated with an impaired hapten-specific contact sensitivity. Thus, despite its homology with CD3zeta and FcRgamma, KARAP/DAP12 plays a specific role in innate immunity, emphasizing the nonredundancy of these ITAM-bearing polypeptides in hematopoietic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.