This paper investigates the incompressible limit of a system modelling the growth of two cells population. The model describes the dynamics of cell densities, driven by pressure exclusion and cell proliferation. It has been shown that solutions to this system of partial differential equations have the segregation property, meaning that two population initially segregated remain segregated. This work is devoted to the incompressible limit of such system towards a free boundary Hele Shaw type model for two cell populations.
A mathematical model for tissue growth is considered. This model describes the dynamics of the density of cells due to pressure forces and proliferation. It is known that such cell population model converges at the incompressible limit towards a Hele-Shaw type free boundary problem. The novelty of this work is to impose a non-overlapping constraint. This constraint is important to be satisfied in many applications. One way to guarantee this non-overlapping constraint is to choose a singular pressure law. The aim of this paper is to prove that, although the pressure law has a singularity, the incompressible limit leads to the same Hele-Shaw free boundary problem.
This paper proposes a model for the growth two interacting populations of cells that do not mix. The dynamics is driven by pressure and cohesion forces on the one hand and proliferation on the other hand. Following earlier works on the single population case, we show that the model approximates a free boundary Hele Shaw type model that we characterise using both analytical and numerical arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.