The mobilized sediments expelled by the mud volcanoes in Trinidad correspond to liquefied argillaceous and sandy material in which the solid fraction is systematically polygenic and originating from several formations (Cretaceous to Pliocene). The mud is notably rich in thingrained quartz that is angular and frequently mechanically damaged related to shearing at great depth, during the sedimentary burial, and/or hydraulic fracturing processes. The exotic clasts are mostly fractured fragments from various formations of the tectonic wedge (mostly Palaeocene to Miocene). The origin of the solid particles of the mud is polygenic, including deep Cretaceous-Palaeogene horizons close to the décollement, and various materials from the stratigraphic pile pierced by the mud conduits. Moreover, the fluids expelled by the mud volcanoes have a deep origin and notably the gas phase is thermogenic methane generated probably below a depth of 5000 m. The effusions occur either during cycles of moderate effusion of mud and fluids (quiescence regime), or during catastrophic events responsible for the expulsion of huge volumes of mud, clasts and fluids (transient regime). Available subsurface data suggest that the deep structure of the mud volcanoes includes: (1) a focused deep conduit at depth in the zone of overpressure; (2) a mud chamber intruding the surrounding formations around and above the top of the abnormal pressure zone; and (3) a superficial outlet leading to the surface vents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.