The shoot apical meristem (SAM) is a pluripotent group of cells that gives rise to the aerial parts of higher plants. Class-I KNOTTED1-like homeobox (KNOX) transcription factors promote meristem function partly through repression of biosynthesis of the growth regulator gibberellin (GA). However, regulation of GA activity cannot fully account for KNOX action. Here, we show that KNOX function is also mediated by cytokinin (CK), a growth regulator that promotes cell division and meristem function. We demonstrate that KNOX activity is sufficient to rapidly activate both CK biosynthetic gene expression and a SAM-localized CK-response regulator. We also show that CK signaling is necessary for SAM function in a weak hypomorphic allele of the KNOX gene SHOOTMERISTEMLESS (STM). Additionally, we provide evidence that a combination of constitutive GA signaling and reduced CK levels is detrimental to SAM function. Our results indicate that CK activity is both necessary and sufficient for stimulating GA catabolic gene expression, thus reinforcing the low-GA regime established by KNOX proteins in the SAM. We propose that KNOX proteins may act as general orchestrators of growth-regulator homeostasis at the shoot apex of Arabidopsis by simultaneously activating CK and repressing GA biosynthesis, thus promoting meristem activity.
Acyl lipids are essential constituents of all cells, but acyl chain requirements vary greatly and depend on the cell type considered. This implies a tight regulation of fatty acid production so that supply fits demand. Isolation of the Arabidopsis thaliana WRINKLED1 (WRI1) transcription factor established the importance of transcriptional regulation for modulating the rate of acyl chain production. Here, we report the isolation of two additional regulators of the fatty acid biosynthetic pathway, WRI3 and WRI4, which are closely related to WRI1 and belong to the APETALA2-ethylene-responsive element binding protein family of transcription factors. These three WRIs define a family of regulators capable of triggering sustained rates of acyl chain synthesis. However, expression patterns of the three WRIs differ markedly. Whereas only WRI1 activates fatty acid biosynthesis in seeds for triacylglycerol production, the three WRIs are required in floral tissues to provide acyl chains for cutin biosynthesis and prevent adherence of these developing organs and subsequent semisterility. The targets of these WRIs encode enzymes providing precursors (acyl chain and glycerol backbones) for various lipid biosynthetic pathways, but not the subsequent lipid-assembling enzymes. These results provide insights into the developmental regulation of fatty acid production in plants.
SummaryLeaves of seed plants can be described as simple, where the leaf blade is entire, or dissected, where the blade is divided into distinct leaflets. Mechanisms that define leaflet number and position are poorly understood and their elucidation presents an attractive opportunity to understand mechanisms controlling organ shape in plants. In tomato (Solanum lycopersicum), a plant with dissected leaves, KNOTTED1-like homeodomain proteins (KNOX) are positive regulators of leaflet formation. Conversely, the hormone gibberellin (GA) can antagonise the effects of KNOX overexpression and reduce leaflet number, suggesting that GA may be a negative regulator of leaflet formation. However, when and how GA acts on leaf development is unknown. The reduced leaflet number phenotype of the tomato mutant procera (pro) mimics that of plants to which GA has been applied during leaf development, suggesting that PRO may define a GA signalling component required to promote leaflet formation. Here we show that PRO encodes a DELLA-type growth repressor that probably mediates GA-reversible growth restraint. We demonstrate that PRO is required to promote leaflet initiation during early stages of growth of leaf primordia and conversely that reduced GA biosynthesis increases the capability of the tomato leaf to produce leaflets in response to elevated KNOX activity. We propose that, in tomato, DELLA activity regulates leaflet number by defining the correct timing for leaflet initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.