The human phase 2B RV144 ALVAC-HIV vCP1521/AIDSVAX B/E vaccine trial, held in Thailand, resulted in an estimated 31.2% efficacy against HIV infection. By contrast, vaccination with VAX003 (consisting of only AIDSVAX B/E) was not protective. Because protection within RV144 was observed in the absence of neutralizing antibody activity or cytotoxic T cell responses, we speculated that the specificity or qualitative differences in Fc-effector profiles of nonneutralizing antibodies may have accounted for the efficacy differences observed between the two trials. We show that the RV144 regimen elicited nonneutralizing antibodies with highly coordinated Fc-mediated effector responses through the selective induction of highly functional immunoglobulin G3 (IgG3). By contrast, VAX003 elicited monofunctional antibody responses influenced by IgG4 selection, which was promoted by repeated AIDSVAX B/E protein boosts. Moreover, only RV144 induced IgG1 and IgG3 antibodies targeting the crown of the HIV envelope V2 loop, albeit with limited coverage of breakthrough viral sequences. These data suggest that subclass selection differences associated with coordinated humoral functional responses targeting strain-specific protective V2 loop epitopes may underlie differences in vaccine efficacy observed between these two vaccine trials.
With the recent demonstration in the RV144 Thai trial that a vaccine regimen that does not elicit neutralizing antibodies or cytotoxic T lymphocytes may confer protection against human immunodeficiency virus type 1 (HIV-1) infection, attention has turned to nonneutralizing antibodies as a possible mechanism of vaccine protection. In the current study, we evaluated the kinetics of the antibody-dependent cell-mediated cytotoxicity (ADCC) response during acute and chronic SIVmac251 infection of rhesus monkeys. We first adapted a flow cytometry-based ADCC assay, evaluating the use of different target cells as well as different strategies for quantitation of activated natural killer (NK) cells. We found that the use of SIVmac251 Env gp130-coated target cells facilitates analyses of ADCC activity with a higher degree of sensitivity than the use of simian immunodeficiency virus (SIV)-infected target cells; however, the kinetics of the measured responses were the same using these different target cells. By comparing NK cell expression of CD107a with NK cell expression of other cytokines or chemokine molecules, we found that measuring CD107a expression is sufficient for evaluating the anti-SIV function of NK cells. We also showed that ADCC responses can be detected as early as 3 weeks after SIVmac251 infection and that the magnitude of this antibody response is inversely associated with plasma viral RNA levels in animals with moderate to high levels of viral replication. However, we also demonstrated an association between NK cell-mediated ADCC responses and the amount of SIVmac251 gp140 binding antibody that developed after viral infection. This final observation raises the possibility that the antibodies that mediate ADCC are a subset of the antibodies detected in a binding assay and arise within weeks of infection.
This study suggests that the temporal variation and maintenance of Env-specific IgG subclasses during acute HIV infection are predictive of eventual disease control. The maintenance of gp120-specific and gp140-specific IgG3 may contribute to control of disease in spontaneous controllers. Thus, strategies to induce stable IgG3 responses may preserve control of the viral reservoir.
Antibody-dependent cell-mediated viral inhibition (ADCVI) is an attractive target for vaccination because it takes advantage of both the anamnestic properties of an adaptive immune response and the rapid early response characteristics of an innate immune response. Effective utilization of ADCVI in vaccine strategies will depend on an understanding of the natural history of ADCVI during acute and chronic human immunodeficiency virus type 1 (HIV-1) infection. We used the simian immunodeficiency virus (SIV)-infected rhesus monkey as a model to study the kinetics of ADCVI in early infection, the durability of ADCVI through the course of infection, and the effectiveness of ADCVI against viruses with envelope mutations that are known to confer escape from antibody neutralization. We demonstrate the development of ADCVI, capable of inhibiting viral replication 100-fold, within 3 weeks of infection, preceding the development of a comparable-titer neutralizing antibody response by weeks to months. The emergence of ADCVI was temporally associated with the emergence of gp140-binding antibodies, and in most animals, ADCVI persisted through the course of infection. Highly evolved viral envelopes from viruses isolated at late time points following infection that were resistant to plasma neutralization remained susceptible to ADCVI, suggesting that the epitope determinants of neutralization escape are not shared by antibodies that mediate ADCVI. These findings suggest that despite the ability of SIV to mutate and adapt to multiple immunologic pressures during the course of infection, SIV envelope may not escape the binding of autologous antibodies that mediate ADCVI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.