Dynamic combinatorial chemistry (DCC) has emerged as an efficient approach to receptor/ligand identification based on the generation of combinatorial libraries by reversible interconversion of the library constituents. In this study, the implementation of such libraries on carbohydrate-lectin interactions was examined with the plant lectin Concanavalin A as a target species. Dynamic carbohydrate libraries were generated from a pool of carbohydrate aldehydes and hydrazide linker/scaffold components through reversible acylhydrazone exchange, resulting in libraries containing up to 474 constituents. Dynamic deconvolution allowed the efficient identification of the structural features required for binding to Concanavalin A and the selection of a strong binder, a tritopic mannoside, showing an IC(50)-value of 22 microM.
A dynamic combinatorial library composed of interconverting acylhydrazones has been generated and screened towards inhibition of acetylcholinesterase from the electric ray Torpedo marmorata. Starting from a small set (13) of initial hydrazide and aldehyde building blocks, a library containing possibly 66 different species was obtained in a single operation. Of all possible acylhydrazones formed, active compounds containing two terminal cationic recognition groups separated by an appropriate distance, permitting two-site binding, could be rapidly identified by using a dynamic deconvolution--screening procedure, based on the sequential removal of starting building blocks. A very potent bis-pyridinium inhibitor (K(i)=1.09 nM, alphaK(i)=2.80 nM) was selected from the process and the contribution of various structural features to inhibitory potency was evaluated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.