We describe a functional wood triboelectric nanogenerator (FW-TENG) made by modifying a wood scaffold respectively with ZIF-8 and PDMS. Our approach enables wood with a wide spectrum of triboelectric polarities while preserving its sustainability and aesthetic appearance. We demonstrate the application of our FW-TENG as an energy-harvesting wooden floor or panel, allowing it to power household lamps and other electronic devices when activated by walking or tapping.
The need for renewable bio-based materials that could replace wellestablished synthetic composite materials is rapidly growing. For example, bio-based materials are increasingly used in applications where a lightweight design should be combined with sustainability and recyclability. However, it is often very challenging to directly transfer the excellent properties of biological materials to a product in a scalable and cost-efficient manner. In this study, we combined delignified wood layers (veneers) and a starch-based glue into bio-based high-performance composites. First, we investigated the ideal amount of starch-based glue between the layers to prevent delamination in the final composite. Then, we produced laminates in unidirectional, cross-ply, and quasi-isotropic configurations using wet processing. Laminates with tensile properties up to 40 GPa and 200 MPa in tensile stiffness and strength, respectively, were fabricated with a very high fiber volume content of up to 80%. The high fiber volume contents led to mechanical interlocks between neighboring fibers and made the need for an additional matrix unnecessary. The water-based laminate process is cost-efficient and scalable and additionally allows one to make full use of delignified wood's formability by producing shaped parts for various applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.