Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5 mM) or high (20 mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity.
Shark-liver oil (SLO) contains two bioactive lipids: alkylglycerols andn-3 PUFA. Alkylglycerols have immunostimulating and haematopoietic properties, whilen-3 PUFA are essential for optimal neonatal development. We investigated the beneficial effects of dietary supplementation with 32g SLO/d to twelve pregnant and then lactating sows (from day 80 of pregnancy to weaning) on the growth and immune status of their offspring, compared with a control group. Sows were vaccinated against Aujeszky's disease 21d before term. Blood samples were collected from sows before treatment, on delivery and 14d later, and from five piglets per litter on days 2, 21 and 36 after birth; colostrum and milk samples were collected 12h, 14 and 28d postpartum. Compared with controls, supplemented sows had higher levels of both erythrocytes and Hb in their blood, and higher concentrations of IgG, alkylglycerols andn-3 PUFA in their mammary secretions. In piglets from supplemented sows, leucocytes and IgG were higher. Supplementation with SLO resulted in an increase in Aujeszky antibodies in both blood and colostrum of sows after vaccination, together with an increase in Aujeszky antibodies in piglet blood. Our findings demonstrate that improvement of both passive and active immune status in piglets is related to the consumption of alkylglycerols associated withn-3 PUFA in the sow diet. The overall improvement in offspring health status by SLO supplementation to the mother could be of interest for optimisation of the lipid diet during and after pregnancy.
Human exposure to bisphenol A (BPA) could favor obesity and related metabolic disorders such as hepatic steatosis. Investigations in rodents have shown that these deleterious effects are observed not only when BPA is administered during the adult life but also with different protocols of perinatal exposure. Whether perinatal BPA exposure could pose a risk in human is currently unknown, and thus appropriate in vitro models could be important to tackle this major issue. Accordingly, we determined whether long-term BPA treatment could induce steatosis in human HepaRG cells by using a protocol mimicking perinatal exposure. To this end, the kinetics of expression of seven proteins differentially expressed during liver development was determined during a 4-week period of cell culture required for proliferation and differentiation. By analogy with data reported in rodents and humans, our results indicated that the period of cell culture around day 15 and day 18 after seeding could be considered as the "natal" period. Consequently, HepaRG cells were treated for 3 weeks with BPA (from 0.2 to 2000 nM), with a treatment starting during the proliferating period. BPA was able to induce steatosis with a nonmonotonic dose response profile, with significant effects on neutral lipids and triglycerides observed for the 2 nM concentration. However, the expression of many enzymes involved in lipid and carbohydrate homeostasis was unchanged in exposed HepaRG cells. The expression of other potential BPA targets and enzymes involved in BPA biotransformation was also determined, giving answers as well as new questions regarding the mechanisms of action of BPA. Hence, HepaRG cells provide a valuable model that can prove useful for the toxicological assessment of endocrine disruptors on hepatic metabolisms, in particular in the developing liver. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1024-1036, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.