The use of Bayesian networks (BN) for environmental risk assessment has increased in recent years as they offer a more transparent way to characterize risk and evaluate uncertainty than the traditional risk assessment paradigms. In this study, a novel probabilistic approach applying a BN for risk calculation was further developed and explored by linking the calculation a risk quotient to alternative future scenarios. This extended version of the BN model uses predictions from a process-based pesticide exposure model (World Integrated System for Pesticide Exposure -WISPE) in the exposure characterization and toxicity test data in the effect characterization. The probability distributions for exposure and effect are combined into a risk characterization (i.e. the probability distribution of a risk quotient), a common measure of the exceedance of an environmentally safe exposure threshold. The BN model was used to account for variabilities of the predicted pesticide exposure in agricultural streams, and inter-species variability in sensitivity to the pesticide among freshwater species. In Northern Europe, future climate scenarios typically predict increased temperature and precipitation, which can be expected to cause an increase in weed infestations, plant disease and insect pests. Such climate-related changes in pest pressure in turn can give rise to altered agricultural practices, such as increased pesticide application rates, as an adaptation to climate change. The WISPE model was used to link a set of scenarios consisting of two climate models, three pesticide application scenarios and three periods (year ranges), for a case study in South-East Norway. The model was set up for the case study by specifying environmental factors such as soil properties and field slope together with chemical properties of pesticides to predict the pesticide exposure in streams adjacent to the agricultural fields. The model was parameterized and evaluated for five selected pesticides: the three herbicides clopyralid, fluroxypyr-meptyl, and 2-(4-chloro-2-methylphenoxy) acetic acid (MCPA), and the two fungicides prothiocanzole and trifloxystrobin. This approach enabled the calculation and visualization of probability distribution of the risk quotients for the future time horizons 2050 and
Conventional environmental risk assessment of chemicals is based on a calculated risk quotient, representing the ratio of exposure to effects of the chemical, in combination with assessment factors to account for uncertainty. Probabilistic risk assessment approaches can offer more transparency, by using probability distributions for exposure and/or effects to account for variability and uncertainty. In this study, a probabilistic approach using Bayesian network (BN) modelling is explored as an alternative to traditional risk calculation. BNs can serve as meta-models that link information from several sources and offer a transparent way of incorporating the required characterization of uncertainty for environmental risk assessment. To this end, a BN has been developed and parameterised for the pesticides azoxystrobin, metribuzin, and imidacloprid. We illustrate the development from deterministic (traditional) risk calculation, via intermediate versions, to fully probabilistic risk characterisation using azoxystrobin as an example. We also demonstrate seasonal risk calculation for the three pesticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.