Aging is often associated with cognitive decline and recurrent cellular and molecular impairments. While life-long caloric restriction (CR) may delay age-related cognitive deterioration as well as the onset of neurologic disease, recent studies suggest that late-onset, short-term intermittent fasting (IF), may show comparable beneficial effects as those of life-long CR to improve brain health. We used a new optogenetic aging model to study the effects of late-onset (.18 months), short-term (four to six weeks) IF on age-related changes in GABAergic synaptic transmission, intracellular calcium (Ca 21 ) buffering, and cognitive status. We used male mice from a bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R [VGAT-ChR2(H134R)-EYFP] in a reduced synaptic preparation that allows for specific optogenetic light stimulation on GABAergic synaptic terminals across aging. We performed quantal analysis using the method of failures in this model and show that short-term IF reverses the age-related decrease in quantal content of GABAergic synapses. Likewise, short-term IF also reversed age-related changes in Ca 21 buffering and spontaneous GABAergic synaptic transmission in basal forebrain (BF) neurons of aged mice. Our findings suggest that late-onset shortterm IF can reverse age-related physiological impairments in mouse BF neurons but that four weeks IF is not sufficient to reverse age-related cognitive decline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.