This narrative review presents an overview on the currently available 3D printing technologies and their utilization in experimental, clinical and educational facets, from the perspective of different specialties of dentistry, including oral and maxillofacial surgery, orthodontics, endodontics, prosthodontics, and periodontics. It covers research and innovation, treatment modalities, education and training, employing the rapidly developing 3D printing process. Research-oriented advancement in 3D printing in dentistry is witnessed by the rising number of publications on this topic. Visualization of treatment outcomes makes it a promising clinical tool. Educational programs utilizing 3D-printed models stimulate training of dental skills in students and trainees. 3D printing has enormous potential to ameliorate oral health care in research, clinical treatment, and education in dentistry.
Objectives LAY-FOMM is a promising material for FDA-approved Fused Deposition Modeling (FDM) applications in drug delivery. Here we investigated the impact on oral cells. Materials and methods We evaluated the impact of 3D-printed LAY-FOMM 40, LAY-FOMM 60, and biocompatible polylactic acid (PLA) on the activity of murine L929 cells, gingival fibroblasts (GF), and periodontal ligament fibroblasts (PDLF) using indirect (samples on cells), direct monolayer culture models (cells on samples), and direct spheroid cultures with resazurin-based toxicity assay, confirmed by MTT and Live-dead staining. The surface topography was evaluated with scanning electron microscopy. Results The materials LAY-FOMM 40 and LAY-FOMM 60 led to a reduction in resazurin conversion in L929 cells, GF, and PDLF, higher than the impact of PLA in indirect and direct culture models. Fewer vital cells were found in the presence of LAY-FOMM 40 and 60 than PLA, in the staining in both models. In the direct model, LAY-FOMM 40 and PLA showed less impact on viability in the resazurin-based toxicity assay than in the indirect model. Spheroid microtissues showed a reduction of cell activity of GF and PDLF with LAY-FOMM 40 and 60. Conclusion Overall, we found that LAY-FOMM 40 and LAY-FOMM 60 can reduce the activity of L292 and oral cells. Based on the results from the PLA samples, the direct model seems more reliable than the indirect model. Clinical relevance A material modification is desired in terms of biocompatibility as it can mask the effect of drugs and interfere with the function of the 3D-printed device.
Imagine you can form whatever tool you need with just one click! Sounds like sci-fi. D printing is a novel tool that will change your experience at the dentist. Today, we can print plastics, ceramics, metals, and even live cells. Printing teeth would be the ultimate goal for dentists. To date, we have printed D models of patients' teeth and jaws. These models are used to plan dental treatment, show the patient the expected results, and treat certain dental issues. The results can be displayed digitally on a computer and as a D-printed model. This increases the patients' enthusiasm and involvement in their treatments. Also, dental students are being trained using D-printed models. D printing can be used to manufacture parts for treating bone fractures and for covering broken teeth with caps. It can also be used to create tooth-colored fillings or dental braces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.