The analysis of the first plant genomes provided unexpected evidence for genome duplication events in species that had previously been considered as true diploids on the basis of their genetics [1][2][3] . These polyploidization events may have had important consequences in plant evolution, in particular for species radiation and adaptation and for the modulation of functional capacities 4-10 . Here we report a high-quality draft of the genome sequence of grapevine (Vitis vinifera) obtained from a highly homozygous genotype. The draft sequence of the grapevine genome is the fourth one produced so far for flowering plants, the second for a woody species and the first for a fruit crop (cultivated for both fruit and beverage). Grapevine was selected because of its important place in the cultural heritage of humanity beginning during the Neolithic period 11 . Several large expansions of gene families with roles in aromatic features are observed. The grapevine genome has not undergone recent genome duplication, thus enabling the discovery of ancestral traits and features of the genetic organization of flowering plants. This analysis reveals the contribution of three ancestral genomes to the grapevine haploid content. This ancestral arrangement is common to many dicotyledonous plants but is absent from the genome of rice, which is a monocotyledon. Furthermore, we explain the chronology of previously described whole-genome duplication events in the evolution of flowering plants.All grapevine varieties are highly heterozygous; preliminary data showed that there was as much as 13% sequence divergence between alleles, which would hinder reliable contig assembly when a wholegenome shotgun strategy was used for sequencing. Our consortium therefore selected the grapevine PN40024 genotype for sequencing. This line, originally derived from Pinot Noir, has been bred close to full homozygosity (estimated at about 93%) by successive selfings, permitting a high-quality whole-genome shotgun assembly.A total of 6.2 million end-reads were produced by our consortium, representing an 8.4-fold coverage of the genome. Within the assembly, performed with Arachne 12 , 316 supercontigs represent putative allelic haplotypes that constitute 11.6 million bases (Mb). These values are in good fit with the 7% residual heterozygosity of PN40024 assessed by using genetic markers. When considering only one of the haplotypes in each heterozygous region, the assembly (Table 1a) consists of 19,577 contigs (N 50 5 65.9 kilobases (kb), where N 50 corresponds to the size of the shorter supercontig or contig in a subset representing half of the assembly size) and 3,514 supercontigs (N 50 5 2.07 Mb) totalling 487 Mb. This value is close to the 475 Mb previously reported for the grapevine genome size 13 .Using a set of 409 molecular markers from the reference grapevine map 14 , 69% of the assembled 487 Mb, arranged into 45 ultracontigs
Ku protein is a relatively abundant DNA-binding protein which was first detected as the autoantigen in a patient with scleroderma-polymyositis overlap syndrome (hence the name 'Ku'). It is a heterodimer of two polypeptide chains of molecular weights 85,000 and 72,000, and it characteristically binds, in vitro, to the ends of DNA fragments, and translocates to form regular multimeric complexes, with one protein bound per 30 bp of DNA. We have studied the mechanism of interaction of Ku protein with DNA in vitro, using protein extracted from cultured monkey cells. We find that the precise structure of the DNA ends is not important for binding, as Ku protein can bind to hairpin loops and to mononucleosomes. Bound protein also does not require DNA ends for continued binding, since complexes formed with linear DNAs can be circularized by DNA ligase. Dissociation of the complex also appears to require DNA ends, since ligase closed circular complexes were found to be extremely stable even in the presence of 2 M NaCl. We also found that Ku molecules slide along DNA, with no preferential binding to specific sequences. Thus, Ku protein behaves like a bead threaded on a DNA string, a binding mechanism which allows us to make a new hypothesis concerning the function of this protein in the nucleus.
Fusarium head blight (FHB) of wheat is a widespread and destructive disease which occurs in humid and semi-humid areas. FHB epidemics can cause serious yield and quality losses under favorable climatic conditions, but the major concern is the contamination of grains with mycotoxins. Resistance to FHB is quantitatively inherited and greatly influenced by the environment. Its evaluation is costly and time-consuming. The genetic basis of FHB resistance has mainly been studied in spring wheat. The objective of this study was to map quantitative trait loci (QTLs) for resistance to FHB in a population of 240 recombinant inbred lines (RILs) derived from a cross between the two Swiss winter wheat cultivars Arina (resistant) and Forno (susceptible). The RILs were genotyped with microsatellite and RFLP markers. The resulting genetic map comprises 380 loci and spans 3,086 cM. The 240 RILs were evaluated for resistance to FHB in six field trials over 3 years. Composite interval mapping (CIM) analyses carried out on FHB AUDPC (i.e. mean values across six environments) revealed eight QTLs which altogether explained 47% of the phenotypic variance. The three main QTLs were mapped on the long arms of chromosomes 6D ( R(2)=22%), 5B ( R(2)=14%) and 4A ( R(2)=10%). The QTL detected on 5B originated from the susceptible parent Forno. Other QTLs with smaller effects on FHB resistance were detected on chromosomes 2AL, 3AL, 3BL, 3DS and 5AL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.