Twenty-one years of ASTER global thermal infrared (TIR) acquisitions provide a large amount of data for volcano monitoring. These data, with high spatial and spectral resolution, enable routine investigations of volcanoes in remote and inaccessible regions, including those with no ground-based monitoring. However, the dataset is too large to be manually analyzed on a global basis. Here, we systematically process the data over several volcanoes using a deep learning algorithm to automatically extract volcanic thermal anomalies. We explore the application of a Convolutional Neural Network (CNN), specifically UNET, to detect subtle to intense anomalies exploiting the spatial relationships of the volcanic features. We employ a supervised UNET network trained with the largest (1500) labeled dataset of ASTER TIR images from five different volcanoes, namely Etna (Italy), Popocatépetl (Mexico), Lascar (Chile), Fuego (Guatemala), and Kliuchevskoi (Russia). We show that our approach achieves high accuracy (93%) with excellent generalization capabilities. The effectiveness of our model for detecting the full range of thermal emission is shown for volcanoes with very different styles of activity and tested at Vulcano (Italy). The results demonstrate the potential applicability of the proposed approach to the development of automated thermal analysis systems at the globalscale using future TIR data such as the planned NASA SBG mission.
Volcanic plume height is a key parameter in retrieving plume ascent and dispersal dynamics, as well as eruption intensity; all of which are crucial for assessing hazards to aircraft operations. One way to retrieve cloud height is the shadow technique. This uses shadows cast on the ground and the sun geometry to calculate cloud height. This technique has, however, not been frequently used, especially not with high-spatial resolution (30 m pixel) satellite data. On 26 October 2013, Mt Etna (Sicily, Italy) produced a lava fountain feeding an ash plume that drifted SW and through the approach routes to Catania international airport. We compared the proximal plume height time-series obtained from fixed monitoring cameras with data retrieved from a Landsat-8 Operational Land Imager image, with results being in good agreement. The application of the shadow technique to a single high-spatial resolution image allowed us to fully document the ascent and dispersion history of the plume–cloud system. We managed to do this over a distance of 60 km and a time period of 50 min, with a precision of a few seconds and vertical error on plume altitude of ±200 m. We converted height with distance to height with time using the plume dispersion velocity, defining a bent-over plume that settled to a neutral buoyancy level with distance. Potentially, the shadow technique defined here allows downwind plume height profiles and mass discharge rate time series to be built over distances of up to 260 km and periods of 24 h, depending on vent location in the image, wind speed, and direction.
Formalised elicitation of expert judgements has been used to help tackle several problematic societal issues, including volcanic crises and pandemic threats. We present an expert elicitation exercise for Piton de la Fournaise volcano, La Réunion island, held remotely in April 2021. This involved 28 experts from nine countries who considered a hypothetical effusive eruption crisis involving a new vent opening in a high-risk area. The tele-elicitation presented several challenges, but is a promising and workable option for application to future volcanic crises. Our exercise considered an “uncommon” eruptive scenario with a vent outside the present caldera and within inhabited areas, and provided uncertainty ranges for several hazard-related questions for such a scenario (e.g. probability of eruption within a defined timeframe; elapsed time until lava flow reaches a critical location, and other hazard management issues). Our exercise indicated that such a scenario would probably present very different characteristics compared to recent eruptions, and that it is fundamental to include well-prepared expert elicitations in updated civil protection evacuation plans to improve disaster response procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.