Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed diversification.
BackgroundMembers of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce.ObjectiveIn order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12.Phylogeny and LifestyleThe genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively.Unique Metabolic FeaturesThe potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus ferrivorans (iron oxidase) indicates the existence of a modified pathway in “Ferrovum” strain JA12. Therefore, the results of the present study extend our understanding of the genus “Ferrovum” and provide a comprehensive framework for future comparative genome and metagenome studies.
Ene-reductases originating from extremophiles are gaining importance in the field of biocatalysis due to higher-stability properties. The genome of the acidophilic iron-oxidizing bacterium "Ferrovum" sp. JA12 was found to harbor a thermophilic-like ene-reductase (FOYE-1). The foye-1 gene was ligated into a pET16bp expression vector system, and the enzyme was produced in Escherichia coli BL21 (DE3; pLysS) cells in yields of 10 mg L. FOYE-1 showed remarkable activity and rates on N-phenylmaleimide and N-phenyl-2-methylmaleimide (up to 89 U mg, >97 % conversion, 95 % (R)-selective) with both nicotinamide cofactors, NADPH and NADH. The catalytic efficiency with NADPH was 27 times higher compared to NADH. At the temperature maximum (50 °C) and pH optimum (6.5), activity was almost doubled to 160 U mg. These findings accomplish FOYE-1 for a valuable biocatalyst in the synthesis of succinimides. The appearance of a thermophilic-like ene-reductase in an acidic habitat is discussed with respect to its phylogenetic placement and to the genomic neighborhood of the encoding gene, awarding FOYE-1 a putative involvement in a quorum-sensing process.
The tenacious association between strains of the heterotrophic alphaproteobacterial genus Acidiphilium and chemolithotrophic iron oxidizing bacteria has long been known. In this context the genome of the heterotroph Acidiphilium sp. JA12-A1, an isolate from an iron oxidizing mixed culture derived from a pilot plant for bioremediation of acid mine drainage, was determined with the aim to reveal metabolic properties that are fundamental for the syntrophic interaction between Acidiphilium sp. JA12-A1 and the co-occurring chemolithoautotrophic iron oxidizer. The genome sequence consists of 4.18 Mbp on 297 contigs and harbors 4015 protein-coding genes and 50 RNA genes. Additionally, the molecular and functional organization of the Acidiphilium sp. JA12-A1 draft genome was compared to those of the close relatives Acidiphilium cryptum JF-5, Acidiphilium multivorum AIU301 and Acidiphilium sp. PM DSM 24941. The comparative genome analysis underlines the close relationship between these strains and the highly similar metabolic potential supports the idea that other Acidiphilium strains play a similar role in various acid mine drainage communities. Nevertheless, in contrast to other closely related strains Acidiphilium sp. JA12-A1 may be able to take up phosphonates as an additional source of phosphor.Electronic supplementary materialThe online version of this article (doi:10.1186/s40793-015-0040-y) contains supplementary material, which is available to authorized users.
Although acidophilic iron oxidizing bacteria related to “Ferrovum myxofaciens” P3G have been detected in various mining sites the knowledge about their physiology is limited to the type strain “F. myxofaciens” P3G. In order to further the knowledge on the metabolic capacity of “Ferrovum” related iron oxidizers we conducted a comparative genome analysis of three “Ferrovum” strains: JA12, PN-J185 and Z-31 (Z-31). The results of the phylogenetic analysis and the genome-to-genome distance calculation indicate that Z-31 belongs to a different “Ferrovum” species than JA12 and PN-J185. Comparative genome analyses revealed variations regarding the carbon, nitrogen and energy metabolism of the three strains which also corroborate the results concerning their phylogenetic relationship.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.