Three patients with a unilateral cortical lesion affecting the dorsolateral prefrontal cortex (DLPFC), i.e. Brodmann area 46, were tested using different paradigms of reflexive saccades (gap and overlap tasks), intentional saccades (antisaccades, memory-guided and predictive saccades) and smooth pursuit movements. Visually guided saccades with gap and overlap, latency of correct antisaccades and memory-guided saccades and the gain of smooth pursuit were normal, compared with controls. These results confirm our anatomical data showing that the adjacent frontal eye field (FEF) was unimpaired in these patients. The specific pattern of abnormalities after a unilateral DLPFC lesion, compared with that of the FEF lesions previously reported, consists mainly of: (i) a bilateral increase in the percentage of errors in the antisaccade task (misdirected reflexive saccades); (ii) a bilateral increase in the variable error in amplitude, without significant decrease in the gain, in the memory-guided saccade task; and (iii) a bilateral decrease in the percentage of anticipatory saccades in the predictive task. Taken together, these results suggest that the DLPFC plays a crucial role in the decisional processes, preparing saccades by inhibiting unwanted reflexive saccades (inhibition), maintaining memorized information for ongoing intentional saccades (short-term spatial memory) or facilitating anticipatory saccades (prediction), depending upon current external environmental and internal circumstances.
Background: Camptocormia is defined as an abnormal flexion of the trunk that appears when standing or walking and disappears in the supine position. The origin of the disorder is unknown, but it is usually attributed either to a primary or a secondary paravertebral muscle myopathy or a motor neurone disorder. Camptocormia is also observed in a minority of patients with parkinsonism. Objective: To characterise the clinical and electrophysiological features of camptocormia and parkinsonian symptoms in patients with Parkinson's disease and camptocormia compared with patients with Parkinson's disease without camptocormia. Methods: Patients with parkinsonism and camptocormia (excluding patients with multiple system atrophy) prospectively underwent a multidisciplinary clinical (neurological, neuropsychological, psychological, rheumatological) and neurophysiological (electromyogram, ocular movement recording) examination and were compared with age-matched patients with Parkinson's disease without camptocormia. Results: The camptocormia developed after 8.5 (SD 5.3) years of parkinsonism, responded poorly to levodopa treatment (20%) and displayed features consistent with axial dystonia. Patients with camptocormia were characterised by prominent levodopa-unresponsive axial symptoms (ie, axial rigidity, gait disorder and postural instability), along with a tendency for greater error in the antisaccade paradigm. Conclusion: We suggest that (1) the salient features of parkinsonism observed in patients with camptocormia are likely to represent a specific form of Parkinson's disease and camptocormia is an axial dystonia and (2) both camptocormia and parkinsonism in these patients might result from additional, nondopaminergic neuronal dysfunction in the basal ganglia.
Mutations of the LGI1 (leucine-rich, glioma-inactivated 1) gene underlie autosomal dominant lateral temporal lobe epilepsy, a focal idiopathic inherited epilepsy syndrome. The LGI1 gene encodes a protein secreted by neurons, one of the only non-ion channel genes implicated in idiopathic familial epilepsy. While mutations probably result in a loss of function, the role of LGI1 in the pathophysiology of epilepsy remains unclear. Here we generated a germline knockout mouse for LGI1 and examined spontaneous seizure characteristics, changes in threshold for induced seizures and hippocampal pathology. Frequent spontaneous seizures emerged in homozygous LGI1−/− mice during the second postnatal week. Properties of these spontaneous events were examined in a simultaneous video and intracranial electroencephalographic recording. Their mean duration was 120 ± 12 s, and behavioural correlates consisted of an initial immobility, automatisms, sometimes followed by wild running and tonic and/or clonic movements. Electroencephalographic monitoring indicated that seizures originated earlier in the hippocampus than in the cortex. LGI1−/− mice did not survive beyond postnatal day 20, probably due to seizures and failure to feed. While no major developmental abnormalities were observed, after recurrent seizures we detected neuronal loss, mossy fibre sprouting, astrocyte reactivity and granule cell dispersion in the hippocampus of LGI1−/− mice. In contrast, heterozygous LGI1+/− littermates displayed no spontaneous behavioural epileptic seizures, but auditory stimuli induced seizures at a lower threshold, reflecting the human pathology of sound-triggered seizures in some patients. We conclude that LGI1+/− and LGI1−/− mice may provide useful models for lateral temporal lobe epilepsy, and more generally idiopathic focal epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.