Extant vertebrates form two clades, the jawless Cyclostomata (lampreys and hagfishes) and the jawed Gnathostomata (all other vertebrates), with contrasting facial architectures. These arise during development from just a few key differences in the growth patterns of the cranial primordia: notably, the nasal sacs and hypophysis originate from a single placode in cyclostomes but from separate placodes in gnathostomes, and infraoptic ectomesenchyme migrates forward either side of the single placode in cyclostomes but between the placodes in gnathostomes. Fossil stem gnathostomes preserve cranial anatomies rich in landmarks that provide proxies for developmental processes and allow the transition from jawless to jawed vertebrates to be broken down into evolutionary steps. Here we use propagation phase contrast synchrotron microtomography to image the cranial anatomy of the primitive placoderm (jawed stem gnathostome) Romundina, and show that it combines jawed vertebrate architecture with cranial and cerebral proportions resembling those of cyclostomes and the galeaspid (jawless stem gnathostome) Shuyu. This combination seems to be primitive for jawed vertebrates, and suggests a decoupling between ectomesenchymal growth trajectory, ectomesenchymal proliferation, and cerebral shape change during the origin of gnathostomes.
The recent developments of phase-contrast synchrotron imaging techniques have been of great interest for paleontologists, providing three-dimensional (3D) tomographic images of anatomical structures, thereby leading to new paleobiological insights and the discovery of new species. However, until now, it has not been used on features smaller than 5-7 μm voxel size in fossil bones. Because much information is contained within the 3D histological architecture of bone, including an ontogenetic record, crucial for understanding the paleobiology of fossil species, the application of phase-contrast synchrotron tomography to bone at higher resolutions is potentially of great interest. Here we use this technique to provide new 3D insights into the submicron-scale histology of fossil and recent bones, based on the development of new pink-beam configurations, data acquisition strategies, and improved processing tools. Not only do the scans reveal by nondestructive means all of the major features of the histology at a resolution comparable to that of optical microscopy, they provide 3D information that cannot be obtained by any other method.
Here we study the occurrence of torsion-resisting morphological and histological features (thin bone walls, circular shaft cross-section, oblique collagen fibers, and laminar tissue arrangement) in a sample of 168 long bones from wings and legs of 22 bird species. These structural parameters were measured in mid diaphyseal undemineralized cross-sections and analyzed using uni-, bi-, and multivariate (principal components analysis) data analysis techniques. We found that the four variables are significantly and positively correlated, and that covariation between variables accounts for as much as 58% of the total variation. These results suggest that torsion is a main determinant of the macro-and microstructural design of long bones in birds. Humerus, ulna, and femur generally possess torsion-resisting features, while other bones (radius, carpometacarpus, tibiotarsus, tarsometatarsus, and foot phalanx) rather show bending/axial load-resisting structural properties. These results are congruent with in vivo strain data from the literature, which reported high torsional loading in humerus and ulna during flapping flight, but also in the subhorizontal avian femur during terrestrial locomotion. The precise function of the laminar tissue spatial arrangement, the role of pneumatization, and the influence of flight mode are discussed.
Because of its close relationship to tetrapods, Eusthenopteron is an important taxon for understanding the establishment of the tetrapod body plan. Notably, it is one of the earliest sarcopterygians in which the humerus of the pectoral fin skeleton is preserved. The microanatomical and histological organization of this humerus provides important data for understanding the evolutionary steps that built up the distinctive architecture of tetrapod limb bones. Previous histological studies showed that Eusthenopteron's long-bone organization was established through typical tetrapod ossification modalities. Based on a three-dimensional reconstruction of the inner microstructure of Eusthenopteron's humerus, obtained from propagation phase-contrast X-ray synchrotron microtomography, we are now able to show that, despite ossification mechanisms and growth patterns similar to those of tetrapods, it also retains plesiomorphic characters such as a large medullary cavity, partly resulting from the perichondral ossification around a large cartilaginous bud as in actinopterygians. It also exhibits a distinctive tubular organization of bone-marrow processes. The connection between these processes and epiphyseal structures highlights their close functional relationship, suggesting that either bone marrow played a crucial role in the long-bone elongation processes or that trabecular bone resulting from the erosion of hypertrophied cartilage created a microenvironment for haematopoietic stem cell niches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.