STIM proteins populate and expand cortical endoplasmic reticulum (ER) sheets to mediate store-operated Ca2+ entry (SOCE) by trapping and gating Orai channels in ER-plasma membrane clusters. A longer splice variant, STIM1L, forms permanent ER-plasma membrane clusters and mediates rapid Ca2+ influx in muscle. Here, we used electron microscopy, total internal reflection fluorescence (TIRF) microscopy and Ca2+ imaging to establish the trafficking and signaling properties of the two STIM1 isoforms in Stim1−/−/Stim2−/− fibroblasts. Unlike STIM1, STIM1L was poorly recruited into ER-plasma membrane clusters and did not mediate store-dependent expansion of cortical ER cisternae. Removal of the STIM1 lysine-rich tail prevented store-dependent cluster enlargement, whereas inhibition of cytosolic Ca2+ elevations or removal of the STIM1L actin-binding domain had no impact on cluster expansion. Finally, STIM1L restored robust but not accelerated SOCE and clustered with Orai1 channels more slowly than STIM1 following store depletion. These results indicate that STIM1L does not mediate rapid SOCE but can trap and gate Orai1 channels efficiently without remodeling cortical ER cisternae. The ability of STIM proteins to induce cortical ER formation is dispensable for SOCE and requires the lysine-rich tail of STIM1 involved in binding to phosphoinositides.
STIM1 and Orai1 are essential players of store-operated Ca entry (SOCE) in human skeletal muscle cells and are required for adult muscle differentiation. Besides these two proteins, TRPC (transient receptor potential canonical) channels and STIM1L (a longer STIM1 isoform) are also present on muscle cells. In the present study, we assessed the role of TRPC1, TRPC4 and STIM1L in SOCE, in the maintenance of repetitive Ca transients and in muscle differentiation. Knockdown of TRPC1 and TRPC4 reduced SOCE by about 50% and significantly delayed the onset of Ca entry, both effects similar to STIM1L invalidation. Upon store depletion, TRPC1 and TRPC4 appeared to interact preferentially with STIM1L compared to STIM1. STIM1L invalidation affected myoblast differentiation, with the formation of smaller myotubes, an effect similar to what we reported for TRPC1 and TRPC4 knockdown. On the contrary, the overexpression of STIM1L leads to the formation of larger myotubes. All together, these data strongly suggest that STIM1L and TRPC1/4 are working together in myotubes to ensure efficient store refilling and a proper differentiation program.
Transient receptor potential canonical (TRPC) channels belong to the large family of TRPs that are mostly nonselective cation channels with a great variety of gating mechanisms. TRPC are composed of seven members that can all be activated downstream of agonist-induced phospholipase C stimulation, but some members are also stretch-activated and/or are part of the store-operated Ca entry (SOCE) pathway. Skeletal muscles generate contraction via an explosive increase of cytosolic Ca concentration resulting almost exclusively from sarcoplasmic reticulum Ca channel opening. Even if neglected for a long time, it is now commonly accepted that Ca entry via SOCE and other routes is essential to sustain contractions of the skeletal muscle. In addition, Ca influx is required during muscle regeneration, and alteration of the influx is associated with myopathies. In this chapter, we review the implication of TRPC channels at different stages of muscle regeneration, in adult muscle fibers, and discuss their implication in myopathies.
Satellite cells (SC) are muscle stem cells located between the plasma membrane of muscle fibers and the surrounding basal lamina. They are essential for muscle regeneration. Upon injury, which occurs frequently in skeletal muscles, SCs are activated. They proliferate as myoblasts and differentiate to repair muscle lesions. Among many events that take place during muscle differentiation, cytosolic Ca signals are of great importance. These Ca signals arise from Ca release from internal Ca stores, as well as from Ca entry from the extracellular space, particularly the store-operated Ca entry (SOCE). This paper describes a methodology used to obtain a pure population of human myoblasts from muscle samples collected after orthopedic surgery. The tissue is mechanically and enzymatically digested, and the cells are amplified and then sorted by flow cytometry according to the presence of specific membrane markers. Once obtained, human myoblasts are expanded and committed to differentiate by removing growth factors from the culture medium. The expression levels of specific transcription factors and in vitro immunofluorescence are used to assess the myogenic differentiation process in control conditions and after silencing proteins involved in Ca signaling. Finally, we detail the use of Fura-2 as a ratiometric Ca probe that provides reliable and reproducible measurements of SOCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.