Fragrances are common causes of contact allergy. Geraniol (trans-3,7-dimethyl-2,6-octadiene-1-ol) is an important fragrance terpene. It is considered a weak contact allergen and is used for fragrance allergy screening among consecutive dermatitis patients. Analogous to other monoterpenes studied, such as limonene and linalool, geraniol has the potential to autoxidize on air exposure and form highly allergenic compounds. The aim of the present study was to investigate and propose a mechanism for the autoxidation of geraniol at room temperature. To investigate whether allergenic compounds are formed, the sensitizing potency of geraniol itself, air-exposed geraniol, and its oxidation products was determined using the local lymph node assay in mice. The results obtained show that the allylic alcohol geraniol follows an oxidation pattern different from those of linalool and limonene, which autoxidize forming hydroperoxides as the only primary oxidation products. The autoxidation of geraniol follows two paths, originating from allylic hydrogen abstraction near the two double bonds. From geraniol, hydrogen peroxide is primarily formed together with aldehydes geranial and neral from a hydroxyhydroperoxide. In addition, small amounts of a hydroperoxide are formed, analogous to the formation of the major linalool hydroperoxide. The autoxidation of geraniol greatly influenced the sensitizing effect of geraniol. The oxidized samples had moderate sensitizing capacity, quite different from that of pure geraniol. The hydroperoxide formed is believed to be the major contributor to allergenic activity, together with the aldehydes geranial and neral. On the basis of the present study and previous experience, we recommend that the possibility of autoxidation and the subsequent formation of contact allergenic oxidation products are considered in risk assessments performed on fragrance terpenes.
Observer performance studies are time-consuming tasks, both for the participating observers and for the scientists collecting and analysing the data. A possible way to optimise such studies is to perform them in a completely digital environment. A software tool-ViewDEX (Viewer for Digital Evaluation of X-ray images)-has been developed in Java, enabling it to function on almost any computer. ViewDEX is designed to handle several types of studies, such as visual grading analysis (VGA), image criteria scoring (ICS) and receiver operating characteristics (ROC). The results from each observer are saved in a log file, which can be exported for further analysis in, for example, a special software for analysing ROC results. By using ViewDEX for an ROC experiment, an evaluation rate of approximately 200 images per hour can be achieved, compared to approximately 25 images per hour using hard copy evaluation. The results are obtained within minutes of completion of the viewing. The risk of human errors in the process of data collection and analysis is also minimised. The viewer has been used in a major trial containing approximately 2700 images.
The development of investigation techniques, image processing, workstation monitors, analysing tools etc. within the field of radiology is vast, and the need for efficient tools in the evaluation and optimisation process of image and investigation quality is important. ViewDEX (Viewer for Digital Evaluation of X-ray images) is an image viewer and task manager suitable for research and optimisation tasks in medical imaging. ViewDEX is DICOM compatible and the features of the interface (tasks, image handling and functionality) are general and flexible. The configuration of a study and output (for example, answers given) can be edited in any text editor. ViewDEX is developed in Java and can run from any disc area connected to a computer. It is free to use for non-commercial purposes and can be downloaded from http://www.vgregion.se/sas/viewdex. In the present work, an evaluation of the efficiency of ViewDEX for receiver operating characteristic (ROC) studies, free-response ROC (FROC) studies and visual grading (VG) studies was conducted. For VG studies, the total scoring rate was dependent on the number of criteria per case. A scoring rate of approximately 150 cases h(-1) can be expected for a typical VG study using single images and five anatomical criteria. For ROC and FROC studies using clinical images, the scoring rate was approximately 100 cases h(-1) using single images and approximately 25 cases h(-1) using image stacks ( approximately 50 images case(-1)). In conclusion, ViewDEX is an efficient and easy-to-use software for observer performance studies.
The purpose of the present study was to compare the diagnostic accuracy of dual-view digital mammography (DM), singleview breast tomosynthesis (BT) and BT combined with the opposite DM view. Patients with subtle lesions were selected to undergo BT examinations. Two radiologists who are non-participants in the study and have experience in using DM and BT determined the locations and extents of lesions in the images. Five expert mammographers interpreted the cases using the free-response paradigm. The task was to mark and rate clinically reportable findings suspicious for malignancy and clinically relevant benign findings. The marks were scored with reference to the outlined regions into lesion localization or non-lesion localization, and analysed by the jackknife alternative free-response receiver operating characteristic method. The analysis yielded statistically significant differences between the combined modality and dual-view DM ( p < 0.05). No differences were found between single-view BT and dual-view DM or between single-view BT and the combined modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.