Functional magnetic resonance imaging was used to reveal the shared neural resources between movements performed with effectors of the left versus right body side. Prior to scanning, subjects extensively practiced a complex coordination pattern involving cyclical motions of the ipsilateral hand and foot according to a 90 degrees out-of-phase coordination mode. Brain activity associated with this (nonpreferred) coordination pattern was contrasted with pre-existing isodirectional (preferred) coordination to extract the learning-related brain networks. To identify the principal candidates for effector-independent movement encoding, the conjunction of training-related activity for left and right limb coordination was determined. A dominantly left-lateralized parietal-to-(pre)motor activation network was identified, with activation in inferior and superior parietal cortex extending into intraparietal sulcus and activation in the premotor areas, including inferior frontal gyrus (pars opercularis). Similar areas were previously identified during observation of complex coordination skills by expert performers. These parietal-premotor areas are principal candidates for abstract (effector-independent) movement encoding, promoting motor equivalence, and they form the highest level in the action representation hierarchy.
The authors investigated whether training can reduce bimanual directional interference by using a star-line drawing paradigm. Participants (N = 30) were required to perform rhythmical arm movements with identical temporal but differing directional demands. Moreover, the effectiveness of part-task training in which each movement was practiced in isolation was compared with that of whole-task training in which only combined movements were performed. Findings revealed that bimanual training substantially reduced spatial interference, but unimanual training did not. The authors therefore concluded that the spatial coupling of the limbs is not implemented in a rigid way; instead, the underlying neural correlate can undergo plastic changes induced by training. Moreover, the practical implication that emerged from the present study is that athletic, musical, or ergonomic skills that require a high degree of interlimb coordination are best served by whole-task practice.
Current behavioural theories consider that during motor learning, an effector-independent memory representation of the acquired skill is built up. Using a transfer paradigm, we addressed the nature of the memory representation for a 2:1 multifrequency co-ordination task, requiring, for example, the left arm to cycle twice as fast as the right. After learning this 2:1 pattern, transfer to its converse pattern (i.e., the right arm cycles twice as fast as the left) revealed powerful evidence for negative transfer. The converse task arrangement revealed similar effects. These observations suggest a reconsideration of current viewpoints on movement representations, which emphasize effector independence. Based on the present findings, we propose a new model of motor memory, consisting of an abstract, effector-independent and an effector-specific layer. The abstract code is hypothesized to represent general spatiotemporal movement features, whereas the specific representation refers to effector-related movement commands. This concept is consistent with recent neuroscientific evidence in animal and human species, and invites a reconsideration of current behavioural theories of motor learning and memory.
The present study addressed the nature of the memory representation for interlimb coordination tasks. For this purpose, the acquisition of a multifrequency (2:1) task with the ipsilateral limbs and transfer to the ipsilateral and contralateral body side was examined. In particular, subjects practiced a 2:1 coordination pattern whereby the right arm moved twice as fast as the right leg, or vice versa. Subsequently, they transferred the practiced 2:1 task to three different conditions: (1) the converse partner (i.e., the slow-moving limb had to move fast, and vice versa) at the ipsilateral body side, and (2) the identical and (3) converse 2:1 pattern at the contralateral body side. Findings revealed positive transfer of the identical and converse 2:1 pattern to the contralateral body side. However, no transfer of the learned pattern to its converse partner at the same body side was revealed. We propose a new memory representation model for coordination patterns, composed of an effector-independent and effector-specific component (dual-layer model). It is hypothesized that the general movement goal (i.e., moving one limb twice as fast as the other) constitutes the abstract, higher-level representation that may account for positive contralateral transfer. Conversely, the effector-specific component contains task-specific lower-level muscle synergies that are acquired through practice, prohibiting positive transfer when shifting task allocation within the same effectors. These findings are consistent with recent neuroscientific evidence for neuroplastic changes in distributed brain areas.
In discrete reaction time (RT) tasks, it has been shown that nonsymmetric bimanual movements are initiated slower than symmetric movements in response to symbolic cues. By contrast, no such RT differences are found in response to direct cues ("direct cue effect"). Here, we report three experiments showing that the direct cue effect generalizes to rhythmical bimanual movements and that RT cost depends on different cue features: 1) symbolic versus direct or 2) integrated (i.e., action of both hands is indicated as one entity) versus dissociated (i.e., action of each hand is indicated separately). Our main finding was that dissociated symbolic cues were most likely processed serially, resulting in the longest RTs, which were substantially reduced with integrated symbolic cues. However, extra RT costs for switching to nonsymmetrical bimanual movements were overcome only when the integrated cues were direct. We conclude that computational resources might have been exceeded when the response needs to be determined for each hand separately, but not when a common response for both hands is selected. This supports the idea that bimanual control benefits from conceptual binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.