The first carbon monoxide-releasing molecules (CO-RMs) based on mu2-alkyne dicobalt(0)hexacarbonyl complexes are reported. The alkyne substituents significantly affect the rate of CO-release, cytotoxicity and cell viability. Mechanistic studies provide insight into the CO-RM activation pathways.
We collected contemporary foraminiferal training sets from two salt marshes to enable more precise and accurate proxy historical sea-level reconstructions from southeastern Australia. Combined with an existing training set from Tasmania, this new regional set consists of 112 samples and 16 species of foraminifera, of which 13 are agglutinated. Cluster analyses group the regional training set into a highelevation cluster, dominated by Trochamminita salsa, a mid-elevation cluster, dominated by Entzia macrescens and Trochammina inflata, and a mid-low elevation cluster dominated by Miliammina fusca and tidal-flat species. We develop transfer functions using local and regional training sets and assess their performance. Our resulting site-specific and chosen regional models are capable of predicting sea level with decimetre-scale precision (95% confidence intervals of 0.12-0.22 m). These results are comparable to other examples from around the world. When developing regional training sets, we advocate that the similarity in the environmental settings (particularly salinity) should be assessed as an alternative way of grouping sites, rather than simply using spatial proximity. We compare our findings with global results and conclude that salt marshes along microtidal coasts yield models with the lowest vertical uncertainties. Studies with the lowest uncertainties are located in the western Pacific and the western Atlantic, whereas those from the eastern Atlantic generally have larger tidal ranges and carry larger vertical uncertainties. Our models expand the existing region available for sea-level reconstruction and can be used to generate new late Holocene sea-level reconstructions across southeastern Australia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.