Sorbus commixta Hedl. (Rosaceae family) has a long history as a medicinal plant in East Asian countries. In this study, we evaluated the effect of S. commixta fruit extracts prepared with different ethanol concentrations on anti-melanoma activity, and the extraction yield of phenolic compounds and flavonoids. Using the partitioned fractions from the EtOH extract, we found that the butanol fraction (BF) possessed strong cytotoxic activity against SK-MEL-2 cells (human melanoma cells) but not against HDFa cells (human dermal fibroblast adult cells). Additionally, BF-induced cell death was mediated by the inhibition of the mitogen-activated protein kinase/extracellular regulated kinase (MEK/ERK) signaling pathway, coupled with the upregulation of caspase-3 activity in SK-MEL-2 cells. Furthermore, HPLC analysis of polyphenolic compounds suggested that S. commixta fruits contained several active compounds including chlorogenic acid, rutin, protocatechuic acid, and hydroxybenzoic acid, all of which are known to possess anti-cancer activities. Although this study has been carried out by cell-based approach, these results suggest that S. commixta fruits contain promising anti-melanoma compounds.
The development of genetically engineered cell cultures has been suggested as a potential approach for the production of target compounds from medicinal plants. In this study, we generated PAP1 (production of anthocyanin pigment 1)-overexpressing ginseng (Panax ginseng C.A. Meyer) hairy roots to improve the production of anthocyanins, as well as the bioactivity (e.g., antioxidant and whitening activities) of ginseng. Based on differentially expressed gene analysis, we found that ectopic expression of PAP1 induced the expression of genes involved in the ‘phenylpropanoid biosynthesis’ (24 genes), and ‘flavonoid biosynthesis’ (17 genes) pathways, resulting in 191- to 341-fold increases in anthocyanin production compared to transgenic control (TC) hairy roots. Additionally, PAP1-overexpressing ginseng hairy roots exhibited an approximately seven-fold higher DPPH-free radical scavenging activity and 10-fold higher ORAC value compared to the TC. In α-melanocyte-stimulating hormone-stimulated B16F10 cells, PAP1-overexpressing ginseng hairy roots strongly inhibited the accumulation of melanin by 50 to 59% compared to mock-control. Furthermore, results obtained by quantitative real-time PCR, western blot, and tyrosinase inhibition assay suggested that the anti-melanogenic activity of PAP1-overexpressing ginseng hairy roots is mediated by tyrosinase activity inhibition. Taken together, our results suggested that the ectopic expression of PAP1 is an effective strategy for the enhancement of anthocyanin production, which improves the biological activities of ginseng root cultures.
Genetic engineering is a potential approach to improve secondary metabolism in plants. In order to elucidate the effect of production of anthocyanin pigment 1 (PAP1) overexpression on the bioactivity of ginseng, we analyzed its antioxidant, antimicrobial, and anti-elastase activities in this study. Our results showed that PAP1 overexpression increased the production of polyphenolic compounds including anthocyanins. The antioxidant, antimicrobial, and anti-elastase activities were stronger in anthocyanin-overproducing ginseng hairy roots (AOX) than in wild ginseng hairy roots. Using a different solvent system (0, 30, 70, and 100% (v/v) EtOH), we revealed that variations in the contents of the polyphenolic compounds were highly correlated with changes in the antioxidant and antimicrobial activities of AOX. The antioxidant, antimicrobial, and anti-elastase effects of AOX highlight genetic engineering as a powerful approach to enhance the therapeutic properties of plants. Our results show that AOX could potentially have various functional applications in the cosmetic and pharmaceutical industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.