Under the conditions of this study, it can be concluded that 2% chlorhexidine gel alone was more effective against E. faecalis than calcium hydroxide (P < 0.05). However, its antibacterial activity depended on how long it remained inside the root canal.
Epiphany had higher flow and polymerization stress and lower bond strength values to dentine than AH Plus. In view of these findings it can be implied that AH Plus would provide a better seal.
The aim of this study was to evaluate the effect of different materials used for dentin prophylaxis on the microtensile bond strengths (μTBS) of adhesively cemented indirect composite restorations. Sixty bovine incisors had the buccal surface ground with wet #600-grit silicon carbide abrasive paper to obtain a flat exposed superficial dentin and were submitted to different prophylaxis protocols, as follows: 3% hydrogen peroxide (HydP); 0.12% chlorhexidine (Chlo); sodium bicarbonate jet (SodB); 50-μm aluminum oxide air abrasion (AirA); pumice paste (PumP), and control group-water spray (Cont). After prophylaxis protocols a resin composite block (3.0 mm × 5.0 mm × 5.0 mm) was adhesively cemented using dual resin cement (Rely X ARC). After 24 hours of water storage, specimens were serially sectioned perpendicular to the bonded interface into 1-mm-thick slices. Each specimen was trimmed with a diamond bur to an hourglass shape with a cross-sectional area of approximately 1.0 mm(2) at the bonded area. Specimens were tested (μTBS) at 0.5 mm/min using a universal testing machine. Scanning electron microscopy was used to examine the effects of prophylaxis techniques on dentin. Bond strength data (MPa) were analyzed by one-way analysis of variance and failure mode by Fisher test (α=0.05). μTBS data, means (SD), were (different superscripted letters indicate statistically significant differences): AirA, 25.2 (7.2)(a); PumP, 24.1 (7.8)(a); Chlo, 21.5 (5.6)(a); Cont, 20.6 (8.1)(a); HydP(,) 15.5 (7.6)(b); and SodB(,) 11.5 (4.4)(c). The use of aluminum oxide air abrasion, pumice paste, and chlorhexidine before acid etching did not significantly affect μTBS to dentin; however, the use of hydrogen peroxide and sodium bicarbonate jet significantly reduced μTBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.