Study Objectives Sleep features in infancy are potential biomarkers for brain maturation but poorly characterized. We describe normative values for sleep macrostructure and sleep spindles at 4–5 months of age. Methods Healthy term infants were recruited at birth and had daytime sleep electroencephalograms (EEGs) at 4–5 months. Sleep staging was performed and five features were analyzed. Sleep spindles were annotated and seven quantitative features were extracted. Features were analyzed across sex, recording time (am/pm), infant age, and from first to second sleep cycles. Results We analyzed sleep recordings from 91 infants, 41% females. Median (interquartile range [IQR]) macrostructure results: sleep duration 49.0 (37.8–72.0) min (n = 77); first sleep cycle duration 42.8 (37.0–51.4) min; rapid eye movement (REM) percentage 17.4 (9.5–27.7)% (n = 68); latency to REM 36.0 (30.5–41.1) min (n = 66). First cycle median (IQR) values for spindle features: number 241.0 (193.0–286.5), density 6.6 (5.7–8.0) spindles/min (n = 77); mean frequency 13.0 (12.8–13.3) Hz, mean duration 2.9 (2.6–3.6) s, spectral power 7.8 (4.7–11.4) µV2, brain symmetry index 0.20 (0.16–0.29), synchrony 59.5 (53.2–63.8)% (n = 91). In males, spindle spectral power (µV2) was 24.5% lower (p = .032) and brain symmetry index 24.2% higher than females (p = .011) when controlling for gestational and postnatal age and timing of the nap. We found no other significant associations between studied sleep features and sex, recording time (am/pm), or age. Spectral power decreased (p < .001) on the second cycle. Conclusion This normative data may be useful for comparison with future studies of sleep dysfunction and atypical neurodevelopment in infancy. Clinical Trial Registration: BABY SMART (Study of Massage Therapy, Sleep And neurodevelopMenT) (BabySMART) URL: https://clinicaltrials.gov/ct2/show/results/NCT03381027?view=results. ClinicalTrials.gov Identifier: NCT03381027
Sleep spindles are associated with normal brain development, memory consolidation and infant sleep-dependent brain plasticity and can be used by clinicians in the assessment of brain development in infants. Sleep spindles can be detected in EEG, however, identifying sleep spindles in EEG recordings manually is very time-consuming and typically requires highly trained experts. Research on the automatic detection of sleep spindles in infant EEGs has been limited to-date. In this study, we present a novel supervised machine learning-based algorithm to detect sleep spindles in infant EEG recordings. EEGs collected from 141 ex-term born infants and 6 ex-preterm born infants, recorded at 4 months of age (adjusted), were used to train and test the algorithm. Sleep spindles were annotated by experienced clinical physiologists as the gold standard. The dataset was split into training (81 ex-term), validation (30 exterm), and testing (30 ex-term + 6 ex-preterm) set. 15 features were selected for input into a random forest algorithm. Sleep spindles were detected in the ex-term infant EEG test set with 92.1% sensitivity and 95.2% specificity. For ex-preterm born infants, the sensitivity and specificity were 80.3% and 91.8% respectively. The proposed algorithm has the potential to assist researchers and clinicians in the automated analysis of sleep spindles in infant EEG.
Early infancy is a period of intense learning and development including the processes of neural proliferation, differentiation, migration, myelination, and circuit formation. 1 During this crucial time, we may expect to see the most marked effects of environment-dependent enrichment. Environmental enrichment occurs when stimuli are introduced into the environment, within the appropriate timeframe, positively affecting development through epigenetics and neural plasticity. 2 Infant massage can be considered an environmental enrichment as it involves tactile stimulation and social bonding. 3 Studies suggest that infant massage may counterbalance some negative outcomes resulting from adverse events in early life, 4 and accelerate preterm neurodevelopment, 3,5,6 although some changes fade over the second half of infancy. 3 However, much remains unknown about the possible benefits of infant massage on the neurodevelopment of term-born, low-risk infants.A considerable part of infant life is spent in sleep, with term-born infants sleeping more than two-thirds of the day. Important sleep transitions related to maturation occur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.