This article reports a successful development of the induction heating process (IHP) in a jewelry factory based on experiments and multiphysics consisting of electromagnetic and thermal simulations. First, two experiments were set to measure essential parameters for result validation and multiphysics boundary condition settings. Then, the essential parameters were applied to multiphysics, and both simulation results revealed heat transfer, magnetic flux density (B) generated by the coil, and temperature (T) of the product. B and T were consistent with the experimental results and theory, confirming the reliability of the multiphysics and methodology. After that, all simulation results were analyzed to assess and optimize IHP in terms of the number of coil turns (N), positional placement of the product (P), and coil thickness (Th). Multiphysics revealed that the current operating condition with N = 3 is proper; however, the IHP can be improved more with coil and operating condition optimizations. Finally, completing the optimizations, decreasing 40% of Th with N = 6, and the same P, increased B on the product by 21.62%, leading to IHP efficacy enhancement. The research findings are the optimum coil model and methodology for developing the IHP, which were practically employed in the jewelry factory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.